Dynamic fracture along bimaterial and heterogeneous interfaces
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1 INTRODUCTION

Intersonic debonding, for which the speed of the debonding front exceeds the shear wave speed of the
more compliant material, has received increasing attention over the past decade. In particular, the case
of bimaterial problems characterized by high material mismatch shows that contact plays a key role
in the failure process. Rosakis and co-workers (1995, 1998, 2003) performed different experiments of
dynamic debonding along planar interfaces between a quasi-rigid medium made of Steel or Aluminum,
and a compliant medium, PMMA or Homalite. By recording the fringe patterns in the vicinity of the
propagating debonding front, they provided a better description of the subsonic/intersonic transition
and the behavior of contact behind the crack tip.

We investigate numerically the dynamic in-plane debonding along bimaterial planar interfaces using a
spectral formulation of the elastodynamic boundary integral equations. This boundary integral method,
developed by Geubelle and Rice (1995) and extended to bimaterial problems by Breitenfeld and Geu-
belle (1997, 1998), allows for the very efficient modeling of dynamic debonding using a discretization
limited to the interface. It provides very fine level of refinement, unattainable with more conventional
methods such as the finite element and finite difference schemes. The focus of this study is put on
the role of friction along bimaterial interfaces in the transition from subsonic to intersonic regimes of
propagation.

2 PROBLEM DESCRIPTION

The problem geometry is described by two semi-infinite bodies bonded together along a planar inter-
face. Each body is made of a linear isotropic elastic material characterized by the elastic modulus E,
the Poisson’s ratio v, the shear wave speed c, and the dilatational wave speed c,. Friction resulting
from post-fracture contact along the interface is modeled using a regularization of Coulomb friction
law presented by Kammer et al. (2014).
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FIGURE 1 — Geometry of the bimaterial fracture problem.



The geometry of the problem is presented in Figure (1). A 1-D interface is pre-stressed with a load 7
applied in the x — y plane with an angle 1) with respect to the y axis. At time ¢ = 0, a crack of initial
length ay is introduced and starts to propagate spontaneously along the interface.

3 ORIGIN OF CONTACT ZONES IN BIMATERIAL FRACTURE

We first study a failure event along an Aluminum-Homalite interface through space-time diagrams, the
evolution of damage parameters at discrete positions in the path of the crack, energetic arguments, and
the evolution of the speed of the leading and trailing edges of the cohesive and contact zones. Compared
to the single-material system, the bimaterial set-up breaks the symmetry at the interface causing two
effects. First, an inherent mode mixity participates in the failure even with purely tensile or shear far
field loading conditions. Secondly, an asymmetric behavior is observed between crack propagation
directions, i.e., in the same or the opposite direction of the shear displacements of the more compliant
material. When the crack propagates in the same direction, the subsonic/transonic transition is sharp
and the contact area appears directly after the cohesive zone. The oncoming crack propagation shows,
however, a smooth subsonic/intersonic transition and a contact zone which detaches from the crack tip.
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FIGURE 2 — (Left) Space-time diagram of a dynamic debonding between Aluminum and Homalite for
1 = 75°. The black regions correspond to intact portions of the interface, the red areas indicate the
cohesive zones, the yellow regions are traction-free and the white regions correspond to the contact
zones. (Right) Influence of ¢ on the propagation speed v. As highlighted in the space-time diagram,
white squares show the propagation velocities reached at the end of the simulation, blue squares the
speeds when a contact area appears behind the crack tip and green squares the speeds when the contact
zone detaches from the crack tip. The vertical gray bars highlight crack velocities where the contact
zone is trailing the crack tip.

Figure (2) present the results with a particular attention given to the behavior and the role of frictional
contact. At the left tip of cracks subjected to a shear-dominated loading, the material mismatch causes
a normal compressive stress leading to a contact zone trailing the crack front. Another type of contact

zones was observed as the front propagates with ¢, < v < v/2¢, with respect to Homalite. Subsequent
to face closure behind the crack tip, a Rayleigh disturbance propagating at the surface of the mate-
rial causes a contact zone detached from the propagation front. We finally showed that if the contact
behavior is entirely described by the more compliant material in the Aluminum-Homalite problem, a
mixed behavior (governed by the top and bottom materials) is observed when the material mismatch is
reduced.

4 ONGOING WORK

Despite a fundamental set-up (semi-infinite solids, periodic boundary conditions), the spectral scheme
allows for the simulations and the descriptions of many different behaviors observed in bimaterial expe-
riments (distinct natures of contact zones, unfavorable velocity range, asymmetric crack propagation).
Using the same method, the current work is focusing on the effect of tougher heterogeneities along
the interface. A centered crack propagating along a 1-D heterogeneous interface under mixed-mode
loading is considered. The surrounding medium is only made of Homalite while interface heterogenei-
ties correspond to regularly-spaced stripes of higher (five times) fracture energy. Figure (3) presents
space-time diagram of the resulting fracture event.

Two regimes of propagation are observed during time. The first one is characterized by the existence of
several crack tips ; a front tip breaking the weaker bonds while the tougher region traps the rear front.
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FIGURE 3 — Space-time diagram of a dynamic rupture along a heterogeneous Homalite-Homalite in-

terface for ¢ = 45°. A regime transition is observed around c/t/X = (0.33. Green regions represent
intact portions of the interface with five times higher fracture energy. Color code as in Figure (2).

The failure occurs by successive instabilities similar to a stick-slip crack propagation. As more energy
is available at the interface (i.e. longer crack), a second regime is observed where failure happens at a
single front propagating with a steady pattern. These behaviors are similar to weak and strong pinning
regimes observed along 2-D heterogeneous fracture plane (Roux et al. 2003).

REFERENCES

Barras F., Kammer D.S., Geubelle P.H., Molinari J.-E., "A study of frictional contact in dynamic frac-
ture along bimaterial interfaces", Int. J. of Fracture, 189, 2, (2014), pp. 149-162.

Kammer D.S., Yasterbov V., Anciaux G., Molinari J.-F., "The existence of a critical length scale in
regularized friction", J. of the Mechanics and Physics of Solids, 63, (2014), pp. 40-50.

Geubelle P.H., Rice J.R., "A spectral method for three-dimensional elastodynamic fracture problems",
J. of the Mechanics and Physics of Solids, 43, 11, (1995), pp. 1791-1824.

Geubelle P.H., Breitenfeld M.S., "Numerical analysis of dynamic debonding under anti-plane shear
loading", Int. J. of Fracture, 85, 3, (1997), pp. 265-282.

Breitenfeld M.S., Geubelle P.H., "Numerical analysis of dynamic debonding under 2D in-plane and
3D loading", Int. J. of Fracture, 93, 1-4, (1998), pp. 13-38.

Lambros J., Rosakis A.J., "Shear dominated transonic interfacial crack growth in a bimaterial-I. Expe-
rimental observations", J. of the Mechanics and Physics of Solids, 43, 2, (1995), pp. 169-188.

Rosakis A.J., Samudrala O., Singh R.P., Shukla A., "Intersonic crack propagation in bimaterial sys-
tems", J. of the Mechanics and Physics of Solids, 46, 10, (1998), pp. 1789-1813.

Samudrala O., Rosakis A.J., "Effect of loading and geometry on the subsonic/intersonic transition of a
bimaterial interface crack", Eng. Fracture Mechanics, 70, 2, (2003), pp. 309-337.

Roux S., Vandembroucq D., Hild F., "Effective toughness of heterogeneous brittle materials", European
J. of Mechanics - A/Solids, 22, 5, (2003), pp. 743-749.



