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1. INTRODUCTION

Dynamic failure of ductile materials is involved & wide range of applications including the
optimization of fast manufacturing processes arel ghcurity of structures exposed to impact,
explosive loading or crash events. At high loadiatgs, tiny fluctuations in the plastic flow field
induce important acceleration of material particlBisus, significant inertia effects are taking glac
at the macroscopic level and sometimes also alethed of microscopic deformation mechanisms.
Naturally, when subjected to dynamic loading théawsor of metallic materials is quite distinct
from that observed under quasi-static conditiortee flow stress has higher rate dependence. The
load bearing capacity is altered by thermal softgrdue to adiabatic heating resulting from plastic
work. At last, inertia effects and material propestinteract in a complex way that confers a
dynamic signature to the patterning of plastic fltacalization and to the process of internal
damage.

Strain localization, which is often the precursbfaslure of ductile materials, is the result oagptic
flow instability, an outcome of geometrical or m&é softening. The patterning of strain
localization is observed to be quite sensitivehmlbading rate. A single neck is usually seenlal
under quasi-static tensile loading while multiplecking is triggered at high stretching rates.
Multiple necking is a true manifestation of inertiiects.

Fracture of ductile materials is often due to theleation, growth and coalescence of microscopic
voids. Under dynamic loading conditions, these raa@dms can be substantially affected by inertia.
The distinctive features of dynamic ductile damage discussed in another presentation of this
workshop (Jacques et al). A multiscale modellingvofded visco-plastic solids, incorporating
micro-inertia effects, has been developped. Theltesuggest that considering microscale inertia is
of primary importance in the modelling of spalldnare and dynamic ductile crack growth.

A comprehensive overview of the whole field of dyne ductile failure is not attempted here.
Selected topics of dynamic and quasistatic faiareepresented here which comprise the analysis of:
(i) dynamic necking and fragmentation, (ii) shdanfinstabilities and adiabatic shear banding.

2. DYNAMIC NECKING

Experiments on metal rings and shells subjecttenise stretching rates of the order of $breveal
that the fragmentation process of ductile matenglfrequently initiated by multiple necking as
illustrated in Fig.1, [1-5]. The following obseri@ts can be made:

« the number of necks and of fragments increasesthdtioading rate (Fig.1a)

« some necks are arrested before fracture (Fig.4b)

 the overall fracture strain is increasing with kba&ding rate (increased global ductility)
These features are intimately related to inertiects.



2.1  Perturbation analysis

The early stages of multiple necking can be wgltaaed by a linear stability approach. Perturbation
methods were developed by Fressengeas and MoJ6jagind Mercier and Molinari [7-8] for the
analysis of dynamic necking of viscoplastic matseridhe quasistatic problem was examined by
Hutchinson and Neale [9] and Hutchinseinal [10]. Dynamic necking of rate independent plastic
materials was studied by Shenoy and Freund [11]@nduru and Freund [12] by extending the
quasistatic bifurcation analysis of Hill and Huteéon [13]. Simplified one dimensional perturbation
analyses with the Bridgman correction to accountialtiaxial effects in necked regions have been
also used, [14-17].

The effects of inertia are investigated here biofaing the development proposed by Meraeal
[2]. Results were obtained for a uniform plate sgbjto dynamic plane strain stretching and for
incompressible visco-plastic materials obeying fhdlow theory and with flow stress of the

form:o, =g(¢,,£,,T) with ¢ = /(2/3)qj d, and
ge(t):jg'e(r)dr (2.1)

¢, is the effective plastic strain ratg, is the plastic strain rate tensegt) is the cumulated plastic
strain at timet and T is the temperature. Strain hardening, strain retedening and thermal
sensitivity are accounted for in the constitutigation (2.1). Elastic deformations are neglected.

The plate occupies the domain defined by < x, <1, and -, <x, <L, in the initial reference
configuration and is stretched in the directionwith the constant velocity:v applied at the
extremitiex, =+L,, see Fig.2. We denote hythe half current length =y /L the longitudinal

stretch.

Fig. 1. (a) Necking and fragmentation of thingsnof solutionized 6061 Aluminum subject to rapid
radial expansion by the effect of an intense magiield, Altynova et al [1]. The number of necks
and the number of fragments increase with the gniengut (i.e. with the stretching rate):
1) original, 2) 0.94 kJ, 3) 1.38 kJ, 4) 2.06 kJ2538 kJ, 6) quasistatic tensile test (single ne@X)
multiple necking of a tantalum hemisphere underda&xpansion (strain rates of the order of 10000
s%) by the effect of a shock loading generated bgxantosive charge, Mercier et al [2].

The theoretical background solution that existabsence of any flow instability can be calculated
analytically [6] and involves lateral inertial efts. We denote by?, £2, ¢°and T°respectively the

e

flow stress g, =,/(3/2) 5, is the effective stress arglthe deviatoric stress), the cumulated plastic

strain, the equivalent strain rate and the tempegaif the background solution. These quantities ar
uniform. The evolution of°results from adiabatic heating associated to lasik.
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Fig. 2. Plate under plane strain deformation subjecthe constant stretch-ratg =v /

Plastic flow stability is analysed at any timeby perturbing the background solution with a small
displacement fielgk (x,,x,.t), &(X,,X,.t)ysuperimposed to the current position of materialigias.
(X1, X2) and i, %) are respectively the Lagrangian and the Eulecaordinates. The problem
equations are linearized with respect to the cpmeding disturbances of velocity, acceleration,
strain-rates, cumulated plastic strain and stresBessatisfy incompressibility of plastic flow a
stream functiong, is introduced such thak =-1gp,, &, =1%¢,, Where(,), is the partial derivative

with respect to.

The analysis investigates the exponential growth samodes of the form:

AKXy, X, 1) = Aexp(t —t.))sinkX, ) exp(éX,) (2.2)

where 5 characterizes the time evolutiok,and ¢ are Lagrangian longitudinal and transversal
wavenumbers. The boundary conditions at extremétiessatisfied ikinkx,) =0 at x, =+L,, i.e.:

KL, =jm ( positive integer) (2.3)

The relationship between the growth ratand the wave numbdris obtained by using the lateral
boundary conditions and can be written in termdimfensionless parameters as:

7=7(p, 1k?k,mn/el,q) (2.4)
. 12

Wlth ﬁ:l:nﬁ, Ezkl_z/‘_za bl = p/‘ LSA_4 (25)
d, "V o?

m, n and q represent respectively strain rate sensitivityaist hardening and thermal softening
parameters. Inertia effects are embedded in theession of the normalized inertial pressgjre

This linearized perturbation approach was recambd to analyze multiple necking in the dynamic
expansion experiments of hemispherical metallidlshig.1b, Mercieet al[2].

2.2 Stabilizing effect of inertia.

Effects of inertia on the strain localization presean be illustrated by considering a rate depgnde
non-hardening material. The flow stress is takea pswer-law of the equivalent plastic strain rate:

0, =0, 12)" (2.6)

The relationship (2.4) simplifies int=7(p k2, km) . Fig.3 shows results of the perturbation analysis

for a plate of infinite length under plane strairetching. The dependence of the normalized growth
rate 7 is displayed in Fig.3a with respect to the normedi wave numbek for A =1 (initial state)

and the stretch-ratg =10*s*. Material parameters are representative of coppdrare reported in

Table 1 together with loading conditions. A dominarstability mode is emerging with maximum
growth rates, _ and wave numbek__ . The initial neck spacing is given by:

neck — (27)
The quasistatic theory, obtained by setfing 0, indicates thak__ =0, see Fig.3a, i.e. the neck

spacing is infinite. For a plate of finite length),  would correspond to the smallest value of the
wave number compatible with the boundary conditiaing, =+, i.e.j=1in Eq.(2.3). Thus, in
agreement with experimental results, a single mepkedicted by the quasistatic approach. Multiple

Lo = 271k = 2T, K,

max



necking is clearly an outcome of inertia effectseBffect of the stretch-rate is illustrated in.Big
k.. increases withi . Consequently, the neck spacing decreases atrtsgieéch-rates according to

Eq.(2.8) and the number of necks increases, aswdubsa Fig.1a.

Table 1. Material and loading parameters for thatplstretching problem

Material parameters p =8900 kg.ni® o, =109 MPa
ér=1st m=005
Loading conditions i -1¢s L, =03 mm

Inertia stabilizes the strain localization procd®gcomparing the dynamic and quasistatic theaties

is seen in Fig.3a that small wave-number modegdlaravelength) are slowed down by inertia. In
addition, Fig.3b shows that the relative growttergt_ is a decreasing function of the stretch-rate.
Therefore, necking is retarded by inertia at higdding rates.

The damping of short wave-length modes seen irBRgga consequence of stress multiaxiality as
shown in [6-7] by comparing the complete 2-D thetwya simplified one dimensional dynamic

approach developed by Fressengeas and Molinari Fi5dlly, the neck spacing appears to be (via
the selection of a dominant instability mode) thécome of the competition between material
inertia that extinguishes long wavelength pertudvest and stress multiaxiality effects that slow
down short wavelength perturbations.

Recently, an extension of the classical linearibtal@analysis has been proposed by El Mai et al
[45]. This approach allows for taking account oé #tontribution of all perturbation modes on the
preliminary evolution of pre-necks. The distributiof pre-neck spacing could be characterized thus
providing a deeper information as compared to thle knowledge of the dominant neck spacing
presented here.
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Fig. 3. (a) Normalized growth ratgin terms of the normalized wave numiekL; in the initial

state (1=1) for j =10*s*. Material parameters are given in Table 1. The ad@nt mode is
characterized by the wave numbeggtand the normalized growth ratemax With respect to the
guasistatic theory, inertia slows down the long @&lamgth perturbations (small wave number) but
has negligible effect on small wavelengths; (b)rthmber of necks is increases (largekx) with
the stretch-ratei =V/L; as in Fig.1a, while the growth ratemaxdecreases (neck retardation).

2.3 Neck retardation



It was qualitatively shown with the linearized pebation analysis that, in addition to the usual
retarding effects of strain hardening and strate feardening, strain localization could be strongly
slowed down by inertia. This delay leads to thengineenon of neck retardation which is considered
as beneficial in terms of an overall increase oftitity. To quantify neck retardation one has to
recourse to a fully non-linear analysis. Initiafelds have an essential role in controlling theslef
strain at which localized necking is triggered,. [®lertia effects and neck retardation due to iaert
were explored by finite element simulations forsander simple tension, [17-20], and for ring
expansion tests, [21-23].

Xue et al [20] considered an infinite plate under planeisti@nstraint subject to the constant
stretch-ratd. The flow stress is taken as rate-independent ginen by the Hollomon
law,o, =o.g). They worked with periodic unit-cells to exploteeteffect of a geometrical defect

(amplitude and wave-length), material parameterd mertia on strain localization and neck
retardation. Finite element calculations were pengd on unit-cells of the type shown in Fig.2, with
A=v/L,. The initial thickness of the platk, has a sinusoidal imperfection with initial wavedéh,

Lw=2L1, and amplitudey, : h=h’(1-0.57° cos(aXy/Ly) ), with h°=2L,.

For several values of , ° and L, Xueet al [20] calculated the overall strain at localizeakirg,

£+ 1hey demonstrated the existence of a criticalelength for whichg,_, is minimized for given

values of Aand/° . This critical wavelength corroborates the emecgeof a dominant instability
mode suggested by the linearized stability analydie critical wavelength is a decreasing function
of the applied stretch-rate, in qualitative agreetneith the linearized stability analysis. Thuse th
number of necks increases at high strain rates.rétaeding effect of inertia on localized necking
was also quantified by Xue et al [20], see Fig.4.
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Fig. 4. (a) Results of the cell-model, Xue et2dl][ The necking stra#neckincreases with the
normalized stretch-rate (neck retardation). The enial response is rate-insensitive and described
by the Hollomon law. Several hardening exponentsyrdlconsidered. The amplitude of the

geometrical defect ig’=0.04. The effect of the Young modulus, E, app@albe negligible. (b)
Arrested necks in a fragment of aluminum ring whies dynamically expanded, Zhang and Ravi-
Chandar [5].

2.4 Fragmentation

The process of fragmentation of ductile rings sctbje rapid expansion has been simulated with
finite element calculations [24-26]. Zhat al [16] have described the entire process of strain
localization and fragmentation with a simplifiedesdimensional framework using the Bridgman
correction to account for stress multiaxiality viithhecked regions. The first stage is characterized
by multiple necking with a characteristic neck eattresulting from the selection of a dominant
wavelength dictated by the interplay between inedaind material parameters. However, another



selection process is appearing later. When stogialization proceeds, it is observed that someseck
are arrested while others are evolving to comgleigture. The phenomenon of neck arrest is clearly
seen in the experiments of Zhang and Ravi-ChariaFig.4b, and in the numerical simulations of
Zhouet al[16]. Slow necks are arrested by unloading Motveg[27] emanating from fast growing
necks.

The model of periodic unit-cells discussed in thevpus section has a limitation since it assumes
that the defects are periodically distributed aldhg sample (uniform wavelength and uniform
imperfection amplitude). In this approach all readevelop equally and are equally spaced. If
fracture is assumed to occur at the same failusenstall necks would break simultaneously and
none of them would be arrested. Thus, neck arsegue to irregularities in the material properties
and sample geometry. Consequently, statisticalcéspe essential features of a fragmentation
theory. Elegant and efficient theories of fragnaéioh based on statistical generation of fracture
sites and occultation by unloading waves have d®mreloped by Mott [27] and Grady [28].
However, in these approaches the material progeans defects are embedded in a “nucleation
function” which governs the statistical generatafrfracture sites. Actually, there is a need td lin
the fracture process to material and geometriagbgaties. The linearized stability analysis and the
finite element simulations presented above aresstemards establishing this link, but further
advances are still needed.

A simple heuristic view of the process of neck strian be attempted. For convenience, we assume
that a constant overall strain raie ji/4is applied instead of the constant stretch-rass before.
Consider two neighbour necks denoted Neckl and Neck2 We neglect in a first step any
interaction between necks and we denoteghby) (respe.,, (2)) the value of the overall strain at
which failure occurs withifNeckl1(resp.Neck3. Differences betwees, @ and g, (2)are due to
fluctuations in material and geometrical defectailUfe strains can be calculated by using finite
element computational cell-models accounting fa tlynamic localization process and a failure

criterion. Failure occurs within necks with a timgelay st_, which is roughly given
byst,, =, /¢, where g, =|s., 0 -£., |- Denoting by, the neck spacing, the time for the

Mott unloading wave to travel with speeg from one neck to the next one &3, =L, ,/c

The slow neck is arrested if the unloading wave raahag from the fast neck arrives before
completion of failure, i.e. ifst._ <ot . This analysis is certainly oversimplified, butciearly

indicates that the phenomenon of neck arrest isrhikely to occur at low loading rates and for
large fluctuations of the defect’s amplitudes (iegdo larges,,, ), conditions under which large

values of 5t_, are expected. In the ideal case of a materialsamgtture free of defects, we have
%.,, =0 and no neck is arrested.

Mott *

Fail *

When the loading rate is increasedst,, =g, /¢ is approaching zero, althoughe,, may be
slightly growing with inertia effects. On the otheand it can be shown that_ is decreasing to a

non-zero asymptotic limit at high strain rates, Rguezet al[29]. It follows that at high values af
the characteristic unloading timgt.__ =L /¢, .tends to a non-zero limit, whilest_ is

Travel — “neck ! “Mott Fail

approaching zero. Therefore, the proportion ofshe necks is a decreasing function of as at
high loading rates less time is left to the Mottoawling waves to communicate between necks. At
very high strain rates, a situation is approachbdre all necks are fractured, and the fragment size
is coming close to the neck spacing. Naturally flagment size decreases withsince the neck
spacing and the number of arrested necks shrirkvigther values of.

To summarize, the fragmentation process is coettobly interplay between material properties,
inertia and statistical defects. Inertia effects @rore pronounced at higher strain rates (reduction
the neck spacing and fragment size, absence of cmication between necks, increase of the
overall ductility). Then, statistical defects amttgng less important and the problem turns ouigo
more deterministic.

It is worth mentioning that similar conclusions aeached when dealing with multidimensional
dynamic fracture of ductile materials (Grady [28f)when considering brittle materials (Denouald



and Hild [30], Forquin and Hild [31]) although tH&lure mechanics are quite different (necking
versus micro-cracking).

3. ADIABATIC SHEAR BANDING

Ductile failure by adiabatic shear banding is frefly observed in metals subject to high loading
rates especially when compressive and shearing sna@einvolved. Adiabatic shear bands (ASB)
are seen in impact and penetration problems. Thewlao involved in fast forming processes such
as forging and high speed machining. ASB are mamzones with thickness of the order of few
micro-meters where shear deformation is highly liaed. Here again, the process of strain
localization is a consequence of plastic flow ibg8ity, generally attributed to thermal softenidge

to heating by plastic work and quasi-adiabatic domas. However, for some materials, other
softening mechanisms such as dynamic recrystatizair phase transformation may be involved,
see for instance Rittet al [32]. Reviews on ASB can be found in Bai and D§88] and Wright
[34].

The spontaneous occurrence of a family of ASB &ed tollective behavior can be experimentally
captured by considering the radial collapse ofnegrs driven by explosive loading, Nestereeko

al [35] or electromagnetic pulses, Lovinggral [36]. It is of interest to note that families oSB
with regular spacing are also observed in high@mpeachining of metals (chip segmentation) where
shearing is the main deformation mode, Komandudi ¥on Turkovich [37], Molinari et al [38],
Miguelez et al [39], Molinari et al [40].
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Fig.5: Earthquakes at the interface of the JuarFdea and North American plates
(www.pnsn.org/outreach/earthquakesources).

There is a strong similarity between the analy§idymamic necking in expanding rings and shells
and adiabatic shear banding in collapsing cylindentsh however some important differences.
Geometrical softening is not playing any role ia ttase of ASB. Instead, shear localization is drive
by thermal softening and short wavelength pertiobatare damped by heat diffusion. Similarly to
the problem of multiple necking, higher strain safgomote inertia effects that are conducive to
multiple shear banding and to a decreasing of fiearsband spacing and fragment size. The shear
band spacing was characterized by using perturbapproaches by Wright and Ockendon [41] for
viscoplastic response with no-strain hardening laypd/olinari [42] for strain-hardening materials.
Recently, the fragmentation process associatedlisbatic shearing was addressed by Zbhoal
[43] with the type of approach developed by Zlebal [16] to investigate fragmentation by multiple
necking. It was shown that the early stage of dloallzation process is well described with thedine
stability analysis. The entire process of fragmeoa including shear band generation and growth
as well as shear band arrest by unloading wavesdessribed with non-linear calculations. The



spacing between mature (non arrested) shear baasl$onnd to be closer to that predicted by the
momentum diffusion theory of Grady and Kipp [444thby the linearized stability approach.

Finally we will investigate the occurrence of shéaw instabilities in geophysical sciences. Welwil
consider subduction zones that could be at theobg&her deep earthquakes, [46], or slow slip
events, see Fig.5. Recent results obtained by krendolinari and Avouac [47] will be discussed.

4 CONCLUSION

We have seen that inertia can deeply act upon thehamisms of dynamic ductile failure of
metallic materials. The mark of inertia was recagdiat the macro-scale and micro-scale levels and
can bear different aspects:

* Long wavelength perturbations and large scale tefece damped by inertia. Thus, the
characteristic spacing between localization, frectand damage sites is reduced at higher loading
rates.

* The growth rate of perturbations and imperfectianslowed down by inertia. Therefore, strain
localization is retarded at high strain rates. Thasults in an increase of the apparent overall
ductility.

* Wave propagation phenomena are important aspeagnamic failure. Dynamic failure can be
triggered by wave interaction (spalling) or inhdalt by unloading waves during fragmentation
processes.

In addition, we have discussed how thermal effeatssubstantially affect shear flow localization in
metallic materials subjected to high strain rabegéact and high speed forming processes) and in
geophysical sciences (deep earthquakes and slpw\ants in subduction zones).
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