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1. INTRODUCTION

The fracture of ductile materials is often due t@ tnucleation, growth and coalescence of
microscopic voids. Ductile fracture has been thbjestt on numerous investigations in the past
decades [1,2]. On the modelling side, a lot of kéfdnave been made to develop micromechanical
constitutive relationships for porous solids. Gar§®] performed one of the pioneering works in this
direction. The micromechanical approach to ducfigcture (also called local or continuum
approach to ductile fracture) is attractive as @kes it possible to link the fracture resistance of
structural component to microstructural detailst®fconstitutive material. Of course, reliable tiad
predictions require an accurate description ofpfimgsical mechanisms governing the void evolution.
Recent studies were devoted to the incorporatiovoaf shape effects [4], plastic anisotropy [5,6],
matrix tension-compression asymmetry [7] in coostie relations for porous materials and to the
modelling of void coalescence [8-10].

Several researchers employed a micromechanicafigebapproach to analyse dynamic crack
extension [11-14]. In these studies, an extendesiore of the Gurson-Tvergaard-Needleman (GTN)
model accounting for strain-rate sensitivity (viglasticity), adiabatic heating due to plastic
dissipation and temperature-dependent materialgpties [15] was used. The GTN model was also
applied to the prediction of fracture and fragm&atain dynamic expanding ring experiments [16].
The GTN model is based on the Hill-Mandel homogatmin approach, in which the Representative
Volume Element (RVE) is assumed to be in statidlgxiwm. Therefore, in the above-mentioned
analyses of dynamic fracture, inertia is only medhto the macroscopic motion of the material. This
means that void growth and the resulting damaganagkation is tacitly assumed to be dominated
by viscous effects. Viscoplastic damage models \ab@ commonly used for the simulation of spall
fracture (fracture phenomenon induced by the redlexf a shock wave on a free surface or an
interface) [17-19].

Very high stress levels develop in a material sutbp to shock loading or in the vicinity of a
running crack. It is well known that, when a voidedterial is subjected to a sufficiently large
tensile stress, void growth may become unstablas Pfhenomenon, often called cavitation
instability, occurs when the release of elastiagynéue to the cavity expansion is sufficient tovelr
the cavity expansion [20-21]. After the onset ostaible cavitation, void growth is unbounded and
leads rapidly to the complete fracture of the makeSeveral studies dedicated to dynamic void
expansion revealed that, although material rateemiggnce influences the early stage of cavity
growth, after a short time the void evolution isitolled by micro-inertia (local radial inertia amd

the expanding void) [22-25]. This raises questiabsut the applicability of viscoplastic theories of
ductile damage which neglect microscale inertia.

The present paper is devoted to the modelling ofadge by microvoiding under dynamic loading. In
section 2, recent developments on the incorporaifamicrodynamic effects in continuum damage
models are reviewed. In section 3, the accuracynef of these models is assessed on the basis of



comparisons with dynamic finite element cell congpions. In section 4, this model is applied to the
simulation of dynamic crack propagation in a dotddge cracked specimen. It is found that
microscale inertia greatly affects the computedlcgrowth behaviour.

2. CONSTITUTIVE MODELLING OF DYNAMIC DAMAGE IN DUCTILE SOLIDS

2.1 Dynamic homogenization techniques

Because of the quasi-static assumption, the usstasfdard micromechanical approaches to
describe the response of porous materials undenset dynamic loading is questionable. In the
present section, the dynamic homogenization praeemhiroduced by Molinari and Mercier [26] is
briefly described. They proposed a general fornmtatfor the constitutive modelling of
heterogeneous materials, in which inertia effenttuced by microscopic motions (local material
motions inside the RVE) are taken into account.sTégpproach extends previous works on the
dynamic response of voided solids, restricted tirapic stress states [27-29]. It should be
mentioned that Wang and co-workers presented ardiff formalism to model micro-inertia in
heterogeneous materials [30-32].

According to Molinari and Mercier [26], the standatefinition of the macrostress as the volume
average of the stress field in the RVE is not appabte for dynamic conditions. Therefore, a new

definition of the macroscopic stregswas proposed:

s=(g)+(py. Ox) @)
where brackets denote the volume average openatn ahe tensorial producy stands for the
stress field in the RVE;, and x represent respectively the acceleration and posdf a point in

the RVE, relative to the centre of mass of the R®H. Acceleration must be defined with respect
to a reference frame. The one considered here dhmutentred at the centre of mass of the RVE
and the axes should remain parallel to the labordtame.

The macrostress is the sum of two terms: a statigponent related to the behaviour of the matrix
material and a dynamic component inherited fromemataccelerations at the microscale:

5 = Zsta +Zdyn (2)

Also, it should be noticed that Eq. (1) is exacewlmhomogeneous stress boundary conditions over
the RVE are considered. (Of course, Eqg. (1) alddshtor kinematic boundary conditions. This
equation provides a definition of the macroscogiress which is conjugated to the macroscopic
velocity gradient via the principle of virtual poweee Molinari and Mercier (2001)). The rate of
macroscopic stress work per unit volume can bdewrin the following form:

Z:L‘=<a:d>+<§pd;; > €

where| is the macroscopic velocity gradient (definedreswtolume average of the corresponding

microscopic quantity). This relation (3) is the dymc counterpart of the Hill-Mandel lemma. One
sees that the macroscopic stress power is the $uhe wolume average of the microscopic stress
power and the change of kinetic energy relativiaéocentre of mass of the RVE.

When the RVE can be represented by a hollow sphettnsed-form expression for the dynamic
stressz®" was obtained by Molinari and Mercier [26] using tixtended Hill-Mandel lemma (3)
and a trial velocity field almost similar to the San one [3]. In general, the dynamic stress is a

tensor, but its spherical component is predoming@4. Thus, the dynamic stress can be
approximated as a dynamic pressure:

Zdyn - den |:|: Wlth
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It is interesting to point out that the dynamicgmére is function of the void radiaginternal radius

in the hollow sphere). Thus, when microscale iagditaken into account, the macroscopic response
of the material depends on the absolute size oRWiE. From Eq. (4), it appears that the dynamic
pressure depends on the strain-rate and its timneatige. Thus, micro-inertia effects give rise, at

the macroscale, to additional rate effects witlpeesto the usual rate sensitivity associatedeo th
viscoplastic response of the matrix material. Tagecof materials containing non-spherical voids
was recently considered [45].

2.2  Statistically Representative Volume Element (RV&)damaged ductile materials

Microscopic observations of damage in ductile makemgenerally reveals a broad range of void
sizes [35,36]. Therefore, since micro-inertial eféeare size-dependent (see Eq. 4), the use of a
single hollow sphere as a representative volumeissuitable for dynamic conditions (at least, it
does not allow one to describe the effect of vaze fieterogeneities on the material response). To
overcome the limitations of the hollow sphere scheinwas proposed to consider instead that the
material domain contains a population of differsizied voids [34]. Two internal state variables are
used to describe the void population: the numbeodaf per unit volume, denoted by and the void
size distribution functionv(a). It should be pointed out that the average ptrasithe RVE can be
deduced fronN andw(a):

?:gnNJ'aSV\(a)da (5)

It is considered that each void is embedded intniticell being represented by a hollow sphere of
inner radiusa and outer radiub. Thus, the RVE can be viewed as an assemblageghefisal unit
cells (Fig. 1). Different assumptions can be malleutthe distribution of matrix material around
each void [37]. For instance, the value of the ousglius can be set identical for all cells. This
assumption is probably appropriate when voids quaky-spaced. It is also possible to consider that
the local porosity in all cells is equal to the alkporosity. In this case, the cells are homathet
(Fig. 1). From a physical point of view, the honeith construction is related to the assumption that
the local disturbances in the microscopic fieldduiced by the presence of a void take place in a
region whose extent is proportional to the voiesiz

Figure 1. Schematic representation of the RgplrlmiearetVolume Element considered in the present
modelling.

The overall material behaviour is obtained by hoemzation at two different scales. The first
scale corresponds to the unit cell level and tloerse to the scale of the RVE (aggregate of unit
cells). The constitutive response of a given ueit s described by the dynamic hollow sphere
model presented in the previous section, see Bg¥). (The change of scale from the unit cell level
to the macroscale can be made in various mannes simple homogenization schemes, named
model andE-model, have been tested in [38] in the contexdpaill fracture. In th®-model, all cells
are subjected to the macroscopic strain rate,5. For theX-model, the macroscopic stress is



applied to the boundaries of the unit cellss5. When theD-model is adopted together with the
homothetic construction, it can be shown that tlaenwstress can be expressed as [39]:
5 =5+ pong with

Bon= | B,(71- 770+ 5,7+ - 5T -1 77 (6)
wheres is an effective void radius depending on the \giz@ distribution in the material:

& wa)da )

awa)da

1
O ) 8 [O Sy 8

2.3  Example of complete constitutive model

The implementation in a finite element code of ¢omsve models derived from the
micromechanical analysis presented in the prevéagsions requires some extensions. In particular,
elasticity at the macroscopic level is necessaryis(iworth noticing that the micromechanical
analysis has been developed assuming that thexnnaditerial is incompressible and rigid-perfectly
plastic [26]). So, the macroscopic strain rateaasidered to be the sum of an elastic part and a
plastic part. In the constitutive equations derifrean the micromechanical analysis of the previous
sections, the strain rate is replaced by the glastain rate. The elastic response is describied as
hypoelastic relation.

Box 1 provides an overview of an elastic-plastiendge model taking microscale inertia into
account, suitable for implementation in a finitereent code. The static part of the macroscopic
response of the porous material is given by thesadal GTN model. It should be noted that void
nucleation is not accounted for in the model preskm Box 1 (damage results from the growth of
pre-existent voids). The heating due to plastisigation is described by considering adiabatic
conditions. More details about the derivation oftmodel can be found in [39]. An extended
version of this model, taking void nucleation imicount, was recently proposed [46].

Strain-rate tensor:
D=D"+D"

Elastic response:
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Dynamic pressure due to micro-inertia effects:
$=3"+Po" with
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Yield surface (GTN model):
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Kuhn-Tucker loading/unloading conditions:
H>0, ®<0 H®»=0
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Box 1. Constitutive damage model with micro-inértffects.

3. COMPARISON WITH FINITE ELEMENT CELL COMPUTATIONS

In order to validate the proposed modelling, nuoarsimulations of a voided unit cell have been
carried out with the finite element code ABAQUS/Eep. A cylindrical cell with an initially
spherical void at its centre is subjected to uribaeformation (no horizontal displacement at kter
boundaries, see Fig. 2). The initial porosity isi@dgo 1.5x1d and the initial void radius is 22 um
(since dynamic conditions are considered, theresjonse is size-dependent). The mesh consists of
2085 quadrilateral four-node elements with reduceegration and hourglass control (ABAQUS
CAX4R) and 15 triangular constant-strain eleme@#&X3). During the cell deformation, very large
strains occur in the vicinity the void surface. $hadaptive meshing was employed in order to avoid
excessive mesh distortion.

The matrix material has an elastic-viscoplasticavedur obeying to thd, flow theory. Adiabatic
heating is taken into account. Strain hardenintg aad temperature dependences are described by
the following relationship:

(6.2 7)=Ale, + f)"(l{.i]mJ(l—e”T ) with 6= TT ~Tee (8)
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Figure 2. Axisymmetric finite element model of eops material containing an initially spherical
void subjected to uniaxial deformation.

The following parameters, corresponding to some inmegtrength steels, are adopted in
simulations:E=2.1x10" Pa,v=0.3,0=7850 kg/m, A=900x10 Pa,£=0.023,n=0.167,¢,=1.86x1C°

s, m=0.057,T,=50 K, T,=1773 K,11=0.32,C,=470 J/kg/K fro=1. The initial temperature is taken

asTo=300 K.

Figure 3 presents a comparison of stress-strajponses derived from the finite element cell
computations with results obtained with the presmmistitutive framework and the GTN model
(using :=1.25 andg,=1 in both cases). In simulations, a constant rstrate is prescribed by
adjusting the velocity applied on the top boundzrthe cell. Initially, the finite element calculas



predict a step-like stress evolution, due to wanap@gation phenomena. Of course, this evolution
cannot be predicted by the two constitutive modilsvertheless, one observes that these wave

propagation phenomena are rapidly damped out whenmntatrix begins to experience plastic
deformation.
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Figure 3. Stress-strain curves for a porous salidiniaxial deformation at constant strain rate.
Comparisons between results of finite elementooetiputations and predictions of (a) the proposed
constitutive model, and (b) the classical GT(lj\l mpldelvt 3 hich micro-inertia is not taken in account,

are depicted.

From Fig. 3, it appears that the present modekbekescribes the cell response than the GTN
model, which neglects microscale inertia. The predermulation can accurately capture the
evolution of the maximum stress with larger stnate, while the increase of the peak stress derived
from the GTN model is underestimated. In additizre observe that the stress-strain curves
predicted by the finite element simulations exhdwime undulations near the peak stress. These
undulations are a signature of micro-inertia [39,40d become more pronounced when the
magnitude of the applied strain rate increases.present model can reproduce almost perfectly the
finite element predictions while the GTN model petsl a monotonic decrease of the axial stress
after it reaches its peak value.

In order to investigate the influence of micro-tnerduring transient stages, we have also

conducted a simulation for a non-constant rateebbrination. The time evolution of the prescribed
axial strain rate is given by:

D,,(t) =D, U<ty (9)
D, (t) =D, + Do(t ) L t>t

with Do = 10000 &, p,= 4.75x10" s to = 4x10° s. Stress-strain responses obtained with the

different models are shown in Fig. 4. The resuftshe present constitutive model concord with
those of the finite element unit cell computatiofBis is not the case with the GTN model, which is
not able to describe the stress evolution in tagestvhen the strain rate increases.
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Figure 4. Stress-strain response of a porous malariuniaxial deformation with varying strain
rate. Results obtained with the proposed constiguiamework and the GTN model are compared
to those of finite element computations. The(gU)vrdeon of the applied strain rate is given by Eq.

4, APPLICATION TO DYNAMIC CRACK GROWTH

In the present section, the influence of microsaagetia on dynamic crack extension is studied.
The proposed model (see Box 1) has been implemeéntéd finite element code ABAQUS/EXxplicit
via a user-material subroutine. It should be ntted, because of the presence of the time derativ
of the plastic strain rate in the constitutive dures, standard integration algorithms [41] canoet
used for the implementation of the present modelisT we developed a special implicit constitutive
update algorithm based on Newmark's equati@isiulations are performed for a double edge
specimen (Fig. 5). Plane-strain conditions are rassuto prevail. A uniform constant surface
traction of 1500 MPa is applied on the top anddytsurfaces of the specimen.
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Figure 5. Geometry of the double-edge cracked spati Owing to symmetry, only one quarter of
the specimen is meshed in simulations.

As suggested by Seaman et al. [36,42] from expatah@bservations, an exponential function is
used to describe the initial void size distributeithin the material:

w,(a) = 1ex[{—aJ (10)
a a



This function has a single parameter, denotedubythat corresponds to the initial mean void
radius.

The specimen is meshed with four-node elements ngilaced integration and hourglass control
(CPE4R). In the present simulations, material failis implemented using the classical element
deletion procedure. When a critical porodigyis achieved in a particular element, the elemsnt i
removed from the mesh. Unless otherwise stated;ritieal porosity is taken ds=0.5. The material
parameters related to the matrix behaviour areséimee than those adopted in section 3. The initial
porosity and mean void radius are respectively keiqua.5x10* and 5 um (the corresponding value
of the initial number of voids per unit volume dam calculated using Egs. 5 and Ng=4.77x10°
m®). The Tvergaard parameters are seha$.5 andp,=1.15 [43].

Simulations revealed a significant role of micrdedaertia. In particular, it was found that micro-
inertia yields a regularizing effect. Computatidased on the present model exhibit much less mesh
sensitivity than those based on a viscoplasticieersf the GTN model (it should be noted than the
GTN model is the limit of the proposed one as thial void radiusa; tends to 0, for a given initial
porosity). Figure 6 displays contours of porosisedicted by the GTN model (that neglects
microscale inertia) for two levels of mesh refinemet is seen that porosity concentrates in a
narrow region, whose size depends on mesh resoldtidact, the thickness of this narrow band is
equal to the element height. Furthermore, at thesidered time, the crack has run over a longer
distance with the fine mesh, showing that the cgrokvth behaviour predicted by the GTN model is
mesh-sensitive. Figure 7 represents the damag#disin in the specimen predicted by the present
model for several mesh densities. It is seen thatadje is spread over an area that does not depend
on the mesh size. Besides, the amount of cracknadvachieved at the considered time is
independent on the mesh size. Microscale inertgdavspurious mesh effects. It was shown that this
regularizing effect is related to the enhancedrstrate sensitivity of the constitutive responsehat
scale of the RVE due to micro-inertia [39] (By enbed strain rate sensitivity, it is meant that
microscale inertia gives rise to additional rate@ts at the macroscale. However, it should bedhote
that micro-inertia effects are mainly related te ttme derivative on the plastic strain rate).

(a)

(b)

Figure 6. Effect of the mesh size on the porossfyidution (plotted on the undeformed
configuration) in the vicinity of the initial posin of the crack tip Fndlcat d b an arrow) at 196
us. Simulations were carried out with &N model. Colour ma 1.5x1 ue)< porosity< 0.5
(red). The extent of the region depicted in thgsife is about O. 63><0 082 ngg co rse mesh
(element size in the crack tip region:10x107ni) medium mesh (7



_Figure 7. Effect of the mesh size on the porosgiyidution (plotted on the undeformed
configuration) in the vicinity of the initial pogin of the crack tip (indicated by an arrow) at 15
us. Simulations were carried out with gbresent model. The colour map is as’in Fig. 6. The size of
the region shown in this figure is about 0.87x0r@ E()a coarse mesh (element size Dnthe crack

tip region:10x10 urf); (b) medium mesh (7.25x5 {#n(c) fine mesh (3.625x2.5
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Figure 8. Effect of various parameters on the peceeti crack growth behaviour. The reference curve
is obtained with the material parameters give beginning of section 4.

The effect of several material parameters on thekcgrowth behaviour is analyzed in Fig. 8. The
reference curve corresponds to the set of mateai@meters given at the beginning of the present
section (in particula;=5 um and.=0.5). To illustrate the role of microscale inerteack advance
versus time curves obtained walx1.5 pm and with the GTN model (that corresponds$0) are
plotted in Fig. 8. It is reminded that micro-inaréffects become more pronounced when the initial
mean void radius increases, see Eq. 6. It appleatrsnicro-inertia strongly influences the speed at
which the crack propagates. For the reference tas@verage velocity on the first 0.8 mm of crack
advance is 146 m/s. It is equal to 180 m/saferl.5 um and 784 m/s when micro-inertia is not



accounted for (GTN model). On the other hand, cetknsion is not significantly affected by a
change of the value of the critical porosity (ftaetcriterion). Indeed, the mean crack speed
increases only from 146 to 153 m/s when the clipoaosityf. is taken as 0.3 instead of 0.5.
Dynamic ductile crack growth involves high straater deformation and causes an adiabatic heating
of the specimen. Simulations predict a temperatgesas high as 500°C in the vicinity of the crack
tip. However, it seems that thermal effects dovesy much influence the crack growth behaviour.
Indeed, the crack advance versus time curves autdop considering adiabatic and isothermal
conditions are almost similar for the considerexdficuiration (Fig. 8).

5. CONCLUSION

In this paper, a micromechanical model for dynadamage due to void growth in ductile media
is presented. As compared to standard Gurson-likdeis, the original feature of the proposed
approach is that microscale inertia is taken intoant. Micro-inertia effects have been
incorporated using an extended, dynamic versiddiltMandel’'s homogenization approach and are
a direct consequence of local material acceleratwaund the growing voids.

Comparison between theoretical predictions derifredh the proposed model and results of
dynamic finite element cell computations shows adyagreement. Indeed, the present constitutive
model better describe the cell response than #melatd GTN one, especially during transient stages
when rapid strain rate variations occur.

The proposed constitutive model was employed taulsita dynamic crack extension. The effect
of microscale inertia is found to be significamt.darticular, micro-inertia limits the speed at @i
cracks propagate. Also, it was observed that mioedia provides a regularizing effect. Thus,
numerical simulations based on the present modalodcuffer from pathological mesh sensitivity.
Given this reduced mesh dependency, one may astherhthe incorporation of micro-inertia in
continuum theories of ductile fracture negatesnibed to resort to non-local damage models. For the
time being, there is no definite answer to thatstjoa. Obviously, the regularizing effect of micro-
inertia vanishes under quasi-static conditions rd@toee, simulations of stable crack growth based on
the present model will be clearly mesh-dependeaot.duasi-static problems, the use of non-local
formulations is necessary to prevent spurious mefécts. In the case of dynamic loadings,
microscale inertia yields a regularizing effect. wéwer, it is possible that there could exist an
interplay between micro-inertia and non-local etfed his point will be the subject of a future work

In previous works [38,44], a damage model dedicatethe simulation of spall fracture was
developed using the present methodology. Comprareensomparisons between numerical
calculations and experiments (plate impact tesexevearried out. The modelling was found to be
able to accurately describe damage developmentraadsurface velocity profiles for various test
conditions. Furthermore, it was shown that the ey of the numerical simulations is strongly
related to micro-inertia [44]. The present conttibn suggests that micro-inertia must also be taken
into account to analyse crack propagation undeanyn loading. However, comparisons between
modelling and experiments for dynamic crack growtioblems are needed to confirm these
findings.
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