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Structural Fracture Simulation
Rules of the Game

- Given a structure, a material and a loading, answer the
following type of questions:

* Will a crack appear!? If yes for what load? Is it fatal ?
Where is it going ? How much energy does it take away!
(Carpiuc bench for instance, L.Poncelet et al.).

 The (material) model is supposed to be identified on a
set of specimen/structural experiments and then used to
predict reality in a wide range of different loadings/

geometries.



Classification of approaches for fracture simulation
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No discontinuity, softening bulk approaches

= Integral approach: the damage evolution is governed by a driving force which is non-
local i.e. it is the average of the local driving force over some region: (Bazant, Belytschko,
Chang 1984, Pijaudier-Cabot and Bazant 1987).

= Higher order, kinematically based, gradient approach involving higher order gradients
of the deformation: (Aifantis 1984, Triantafillydis and Aifantis 1986, Schreyer and Chen
1986) or additional rotational degrees of freedom (Muhlhaus and Vardoulakis 1987).

* Higher order, damage based, gradient models: the gradient of the damage is a variable
as well as the damage itself. This leads to a second order operator acting on the damage:
(Fremond and Nedjar 1996, Pijaudier-Cabot and Burlion 1996, Peerlings, de Borst et al
1996, Lorentz et Andrieux 1999, Nguyen and Andrieux 2005).

= Generalized continua, micro-morphic approach Forest (et al.) 2006

= Variational approach of fracture: (Francfort and Marigo 1998, Bourdin, Francfort and
Marigo 2000, Bourdin, Francfort and Marigo 2008)

* Phase-field approach emanating from the physics community: (Karma, Kessler and
Levine 2001, Hakim and Karma 2005) and more recently revisited by (Miehe,
Welschinger, Hofacker, 2010).

= Peridynamics Silling 2000
= Comparison papers : Peerlings, Geers et al. 2001, Lorentz et Andrieux 2003

Global regularization and no specific concern for discontinuity



We concentrate on softening bulk
to guide the crack
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Discontinuity or no discontinuity?
Numerical point of view

* No discontinuity requires very small elements to match the high

displacement gradients

» Discontinuity allows mesh coarsening away from moving tips

* Discontinuity limits element distorsion with large strains

» Discontinuity is more complicate than no discontinuity but X-FEM is available

and remeshing techniques have made a lot of progress over the past decade.

» Discontinuity handling can a priori be tedious with complex crack topologies

(we will fix this).



Discontinuity or no discontinuity?
Theory point of view

- Discontinuity gives a direct access to crack opening
(useful for contact, friction, hydraulic fracture,
fragmentation, cutting, blanking,...)

» Discontinuity does not require Gamma Convergence, ie,
no need to prove that the formulation mimics a crack
opening because there is a crack opening in the
formulation



We concentrate on softening bulk
and discontinuity
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Quasi-brittle modeling ingredients for a propagating crack

Toughness  Strength Process zone length  Proc. zone width

GC O-C lcoh 2l. Account for T-stress

|
Griffith |

|
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Griffith CZM TLS Damage




TLS Damage key features

Classical
local model

/ EXtra wO I"k over

______________ P a controlled

thickness

Discontinuous
displacement

cabability

TLS looks like a CZM with some thickness that allows the nose to
find its way. This solves the issues of the CZM that lacks
directionality for growth at the tip.



How to make it happen?

b =0 Classical
local model

/ EXtra WOI‘k over

. _— acontrolled D = D(¢)

thickness

D =0

D!scontinuous D=1¢=1,
displacement

cabability Softening curve



TLS Model Basic Idea :

TLS is a geometrically based damage theory,
Zoom on the localizaing zone
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Constitutive Equations
(quick summary)
\11(67 D) — %(1 . D)Eez anc.:l dissymmetri.c

tension-compression

o or 1
o= =(1—D)Fe, Y = 5D §Ee

D>0, Y-Y.HD)<0 (Y—-Y.H(D))D =0

The last equation is replaced by an averaged one in the localizing
zone

D>0, Y-Y.H<0 (Y-Y.HD=0



Mean fields are a consequence on the way damage may evolve

D = I
- &
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o TLS regularization : replacing local field X by the associated mean field X € o

/ W*D’(gb)dQ:/ XX 'D'($)dQ, VX € o
O\ Qe O\ Q.

@ X can be viewed as a weighted mean, computed over segments parallel to the
gradient of ¢:
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Similarity and difference of TLS with the
non-local integral approach
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Moes et al. 201 | Pijaudier-Cabot, Bazant 1987

In the TLS model, the length over which averaging is
performed in non-constant but evolving in time



Segmentation of the localizaing domain to define the non-local
driving forces

Indep. segment on each
side of the crack

No specific boundary conditions for damage, the damage gradient is
not necessarily orthogonal to the boundary (or symmetry plane).
Important remark : the segments are not explicitly built for the
numerics.



TLS gathers geometrical aspects of fracture
and bulk softening of damage

Fracture TLS Damage Damage
Energy / w(u) d§2 / w(uw, D(¢)) d2 / w(u, D) dQ
Q\a 0 Q
state Ow o ow o ow
equ. 77 Be(u) Oe(u) Oe(u)
state I Ve V > __Ow
equ. G = 9 oD
Dissipat Qa / YD dQ / YD dQ
ion Q Q
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TLS simulation examples

Griffith type Model
(short process zone)

Sharp softening



Implementation aspects
X-FEM enrichment to introduce displacement jumps
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Displacement

X-FEM = Extended finite element method



Simulation examples:
3D chalk case

N\

Clear displacement jump

Salzman et al. 2016



Twisted L-shape

R -

Clear displacemm

Thanks to X-FEM for the
numerical implementation

Salzman et al. 2016






Numerical Cheese
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Salzman et al. 2016
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Merging of damage zone, followed by merging of cracks
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Non-local computational effort only inside the blue zone



Comparison with LEFM
X-FEM simulation of the
early 2000’



Modeling cracks with X-FEM
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Propagation of two cracks emanating
from holes
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Level Set Description of the Crack

The level set function are
assumed to be orthogonal

Vo-Vy=0Vt

w=0
crack front

¢=0 :crack surface

surface of solid

b(x,1), p(x,t)<0 Defines the crack location

¢(x,1), w(x,t)=0 Gives the crack front

x,t)>0 :
wix,1) does not intersect the crack

Stolarska et al. 2001, Belytschko et al. 2001, Moés et al. 2002



Crack growth : Lens-shaped crack
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Crack growth :
Cracked beam 1n bending
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Comments on previous LEFM X-FEM simulations

* Need for an initial crack (no crack initiation)

- Crack growth based on stress intensity factor (not
damage based model).

« Two level set fields needed for each crack.

* Crack merging is complex because each independent
crack had 2 level set fields.

« X-FEM is now used as a core tool in the TLS

implementation. The TLS says where to put the crack.



TLS simulation examples

Long process zone and size effect



Geometrical and mechanical similarities

J; Do we preserve
CZM = ’ lcohaslc->0?

|| YES
4
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From CZM to TLS
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(a) Cohesive linear law. (b) TLS equivalent local behavior for different /. values.

Increasing values of /. are indicated by the arrow.

A. Parrilla-Gomez et al. 2015



CZM and TLS ID equivalence

— TLS
- e OZM

displacement u(x)

position x

For any given stress, we impose same energy, dissipation
and elongation in both models.

Note that the analysis was already carried out with other non-
local approach (Cazes et al 2009, Lorentz et al. 2012)



Analysis of size and shape effects
in concrete beams

join work with
A. Parrilla-Gomez,

D. Gregoire and G. Pijaudier-Cabot et al. 2017



Size Effect experiments on concrete beams
(three point bending)

| | | Boundary
: i =1 E i =2 E i =3 conditions
---1 ; ; >
) L,=35D, |
n=1 D, _
Hi a, = (I?Dﬂ E |-| E
"= n i : i
n=3 [ p ] ] J
n =4 - N N —
\{ | |
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D,=5% i Dy=400mm ; (ai,aa3)=(0.5,02,0) ; width:50 mm

D. Grégoire, L. Rojas-Solano, and G. Pijaudier-Cabot, “Failure and size effect for notched and unnotched concrete beams,”
International Journal for Numerical and Analytical Methods in Geomechanics, vol. 37, no. 10, pp. 1434-1452, 2013.




Deep notch
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Lattice model:

P. Grassl, D. Grégoire, B. Rojas-Solano, Laura, and G. Pijaudier-Cabot, “Meso-scale modelling of the size effect on the
fracture process zone of concrete,” International Journal of Solids and Structures, vol. 49, no. 13, pp. 1818-1827, 2012.



Load (kN)

—_ = = = e
O =N W R Ot

Small Notch

S = N W R ot O N o ©
I

/
’
/
/
/
//
/ 7
//
//
//
//
/
1
/
/A

/

l
_= - - -

- —_—
/ -7
/
////
I//
////
]
II
"'
/ - T T <o

_______

—TLS
- - - experiental
—--lattice

NS o
S
I~
NS
S
S
\\\
N
\\\
\ ~
\\ \\
~ \
~ S <
~ . ~_
~ <
\\ \\ \\
~ -~ <
~ \\\ \\
= \\\ \\\ \
~ -
\\ \\\
\\ =
= \\
\\ \“‘\
T -—__
R T e —— T - -
\‘\“ ‘\_
- T T

~
~
~ |
~
~
~
~
~
~ —
~_ ~ .
~ N
~_
~_
~_
~._
—_
-—
= = -\_
= - _ s — —
- — - —




Load (kN)
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Summary on TLS (V1)

 The extra non-local numerical work is only in the
localizing phase (nothing special in the sane phase).

» Clear indication where to put the crack, giving
displacement discontinuity (level set phi = Ic)

- Explicit scheme nonlinear solver (robustness of the
nonlinear solve).

* “Fast” (2D 5-30 min, 3D 5-10h on 20 procs).



Distinction with gradient damage / phase-field model

® TLS combines sharp crack representation (where crack is fully
formed) and diffuse (process zone). There is thus no need for
fine mesh along the whole crack path, just in the process zone.

® Eikonal equation instead of a Laplace equation. Three
Important consequences

® No matrix solve for damage update, fast marching is used

® No boundary conditions needed for d

® The thickness of the localizing band is 2 Ic (1D, 2D, 3D)

(D)

le

h(D, e)
I

\VD| = ? TLS

AD — Damage Gradient / PF




Difficulties with TLS VI

- TLSVI is fine for Griffith type crack and traction free
crack

- We noticed that long process required much more
element per lc than short ones for the same accuracy.

In TLS VI, the crack is placed traction free on faces where

damage is one. Applying contact with friction afterwards
IS an issue.

Failure under compression will be an issue : how to go
from a scalar isotropic behavior to a surface oriented
localization.

Motivations for a limited softening in the bulk (TLSV2)
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TLS V2 model (cohesive capabilities)

@ Bulk damage D is strictly inferior to 1

o Interfacial damage d is also a function of ¢s = ¢(x = 0), starts to grow for a critical

*
value ¢
1.0{[— D) 1.0f|-"- D)
e d(
0.8 - 0.8
0.6 - =S 0.6]
—~
) p— =
0.4 - 0.4
0.2} 1 02 -~
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
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How to combine interfacila and bulk damage evolution

In TLS VI bulk damage evolves as

n
D>0, Y-Y.H<0 (Y-Y.HD=0 and D= D(¢)

In CZM model interfacial damage evolves as
d>0, y-—yh(d) <0, (y—yeh(d))d=0

TLSV2 states that d = d(¢® |interface)

So interfacial and bulk damage cannot evolve independently,
they are tied by the level set

The TLSV2 evolution is based on configurational forces



Level set field evolution condition in the TLS V2

As the level set evolves it dissipates both in the bulk and the interface.
We impose that this loss is equal to the critical value for level set advance

@ Configurational force:

¢s 1
g = / YD'(9) dx + 5 yd
0

¢:¢s
@ Critical value:

" YH(D(6))D'(6) dx + Lyeh(d)d’
g= [ YeHD@)D'(9) dx+ 5ych()d |

@ Evolution laws:



TLS V2: Damage field and cohesive forces

Zoom

Damage Y T

0 0,458 0,917 A



Splitting test (Brazilian test)




Bulk and cohesive damage

£, 000473
0,043
0,113
0,175
b, 169
0,115
00757
f.0239




Direct access to crack opening



Conclusions

TLS lies between damage and cohesive zone models (best
of both worlds). It gives CZM a way to propagate on its
own branch and coalesce.

Crack appears automatically (location is part of the TLS
model).

The TLS theory is implemented using the X-FEM to allow
for displacement jumps in the simulation (remeshing should
be possible).

No matrix solve for damage update and localization
treatment very limited in space -> low CPU.



Other Works

® Fracture Dynamics (no matrix solve at all and
fixed grid).

® Ductile failure (ongoing). The cumulative plasticity
is controlled.

® [wo-scale solver to further reduce computing
time. Target: 2D < 5min | proc, 3D < |h 20 proc.



