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Abstract

We investigate the nonlinear behavior of elasto-plastic composites with isotropic and linear kinematic hardening.
We first rely on the incremental variational principles introduced by Lahellec and Suquet [5]. We also take
advantage of an alternative formulation, recently proposed by Agoras et al [1] for visco-plastic composites
without hardening, which consists in a double application of the variational procedure of Ponte-Castañeda. We
extend in this paper this approach to elasto-plastic composites with combined linear kinematic and isotropic work-
hardening. The first application of the variational procedure linearizes the local behavior, including hardening,
and leads to a thermo-elastic Linear Comparison Composite (LCC) with a heterogeneous polarization field
inside the phases. The second one deals with the heterogeneity of the polarization and results in a new thermo-
elastic LCC with a per-phase homogeneous polarization field, which effective behavior can then be estimated by
classical linear homogenization schemes. We develop and implement this new incremental variational procedure
for composites comprised of linear elastic spherical particles isotropically distributed in an elasto-plastic matrix.
The predictions of the model are compared with results available in the literature for cyclic proportional and
non-proportional loadings. New results for elasto-plastic composites with combined isotropic and kinematic
hardening are also provided. They are in good agreement with the numerical computations we carried out, at
both local and macroscopic scales.

1 Introduction

For the last 25 years, a huge interest for predicting the effective response of nonlinear composites has been
noting. Most of the work realized on this subject was done with a single potential governing the nonlinear
behavior : the free-energy density in the case of hyperelastic materials and the dissipation potential in the case
of viscous or rigid-materials. These theories are based on variation principles with linearization schemes and
linear homogeneizaton schemes. At the begining, only the first moment was used in these schemes. Thanks to
variational arguments, different autors highlighted the importance to work with the second moment per phase
which enhance the prediction of the models (Ponte Castañeda [7]). Moreover, Ponte Castañeda [9] has shown
that consider both first and second moments per phase allow to have better results thant considering only one of
them.
A new stage has been crossed by Lahellec and Suquet [5] who developped a new incremental variational
procedure to both local and global scale. The local variational principle lies on the introduction of a unique
potential, the condensed incremental potential. This potential is built as the sum of the free-energy density
and the dissipation potential which describe the local behavior of GSM (Halphen and Nguyen [2]). From the
condensed incremental potential, Lahellec and Suquet determined an effectif incremental variational principle
describing the behavior of elastoplastic heterogeneous materials. Thanks to the nonlinear homogenization theory,
it is possible to extand this principle to composites comprised of phases governed by a condensed incremental
potential. Lahellec and Suquet [5] applied this method to extand the variational procedure introduced by Ponte
Castañeda [7] to nonlinear composites comprised of elasto-viscoplastic phases.
In 2013, Lahellec and Suquet [6] proposed a new incremental variational principle to get new estimations of
the local and global behavior for composites comprised of elasto-viscoplastic phases with both isotropic and
linear kinematic hardening. This new procedure relies on two steps. Firstly, using the variational procedure,
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they obtained a secant approximation of the behavior (by linerizing it) leading to a thermoelastic LCC with
heterogeneous polarization. Then, this LCC with heterogeneous polarization is homogenized thanks to the new
method proposed by Lahellec et al. [4].
More recently, Agoras and al. [1] proposed an alternative formulation of the incremental variation procedure
of Lahellec and Suquet [6] to approach the global and local behavior of elasto-viscoplastic composites. This
procedure is also composed of two steps. The first one consists in use the linear comparison method developped
by Ponte Castañeda [7] to linerized the behavior to get a linerize LCC with non-uniform phase properties. The
second one is inpired of the Lahellec et al. [4] method to approximate the linerize LCC with non-uniforme phase
properties to a homegenous LCC with uniform properties per phase which permit to obtain the first and second
moment of the fields in the phases.
The approach presented in this study is based on the key idea presented by Agoras et al. [1] to handle sequentially
the linearization of the local behavior and the accounting for the heterogeneity of the LCC. We propose to
extend this idea, initially applied to elasto-viscoplastic composites without hardening, to elastoplastic composites
with isotropic and linear kinematic hardening. Firstly we described the local behavior and the local and global
variational principles by inspiring of Lahellec and Suquet [5] [6]. Then, we developped the incremental variation
procedure based on the Agoras et al. [1] work. For that, we obtained first the linerize LCC with heterogeneous
coefficients per phase, then, we approximated this LCC to a homogeneous one. This method is applies to the case
of elastoplastic composites reinforced by spherical linear elastic particles distributed isotropically. Finally, we
compared our model to the RVP one Lahellec and Suquet [6] for ideally-plastic matrix and matrix with kinematic
hardening under a axial loading. Moreover, we proposed new data. Indeed, we computed Finite Element Method
simulations on an elastoplastic composite with both isotropic and linear kinematic hardening.

2 Local behavior and incremental variational principles

We consider a Representative Volume Element (RVE) of a N-phases composite material Ω with Ω(r) the occupied
volume by the phase r (r = 1, . . ., N). The phases are GSM having an elasto-plastic local behavior with linear
kinematic hardening and non linear isotropic hardening which is conventionally described by the theory J2 of the
plasticity. This corresponds to a material with internal variables α = (εp, p) describing irreversible phenomena,
where εp the plastic strain field and p the accumulate plastic strain field, with two convex potentials.
The first one is the free-energy density wr(ε, εp, p) where ε denotes the local strain field

w(r)(ε, εp, p) =
1

2
(ε− εp) : L(r) : (ε− εp) +

1

2
εp : H(r) : εp + ŵ(r)(p), with

dw(r)

dp
(p) = R(r)(p) (1)

with L(r) the elasticity tensor, H(r) the kinematix hardening second order tensor, ŵr(p) a scalar function which
depend on p representing the accumulated plastic strain due to the isotropic hardening and R(p) is a scalar
function characterizing the isotropic hardening.
The second potential is the dissipation potential ϕ(r)(α̇) which was obtained by Ladeveze in 1996 [3]

ϕ(r) (ε̇p, ṗ) = φ(r)
(
ε̇peq
)

+ ΦC(ε̇
p, ṗ) (2)

with

φ(r)(ε̇peq) = σ(r)
y ε̇peq and ΦC(ε̇

p, ṗ) =

{
0 if (ε̇p, ṗ) ∈ C

+∞ otherwise
(3)

where ΦC denotes the indicator function on the convex set C = {(ε̇p, ṗ)/g(ε̇p, ṗ) = ε̇peq − ṗ ≤ 0}.

As explained in Lahellec and Suquet [5], an approximation of the constitutive equations for classic GSM can be
obtained by means of the following equations using an implicit Euler-scheme

σn+1 =
∂ w(r)

∂ εn+1
(εn+1,αn+1)

∂ w(r)

∂αn+1
(εn+1,αn+1) +

∂ ϕ

∂ α̇n+1

(
αn+1 −αn

∆t

)
= 0 (4)

The time interval of study [0, T ] is discretized into N time interval and we defined ∆t = tn+1 − tn. To simplify
the notations, we will omit the index n+ 1 for the variables computed at the time tn+1 (i.e. ε = εn+1).
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As in Lahellec and Suquet [5] we introduce the condensed incremental potential J which is defined as the sum
of the free-energy w(r) and the dissipation potential ϕ(r). This potential is nonuniform per phase. Moreover, we
introduce the condensed free-ernergy w∆ and the condensed effective free-energy w̃∆ defined as

w̃∆(E) = inf
ε/〈ε〉=E

〈w∆(ε)〉 = inf
ε/〈ε〉=E

〈
inf

α=(εp,p)
J(x, ε, εp, p)

〉
(5)

Lahellec and Suquet [5] show, thanks to the relation σ = ∂w∆/∂ε and Hill’s lemma, that the macroscopic stress
Σ = 〈σ〉 is given by

Σ =
∂w̃∆

∂E
(E) (6)

3 Application of the double incremental variational procedure to composites
with hardening

The incremental variational procedure, proposed by Lahellec and Suquet [5], leads to the definition of a linear
comparison composite (LCC) with homogeneous polarization per phase, characterized by a free energy w0. The
variational procedure is applied once to deal with both the nonlinearity of the phases and the heterogeneity of the
LCC within the phases. In this method, when defining the linearized incremental potential J0, it is not easy to
exhibit the adequate closed form expression of J0, since two stages, namely the linearization of the behavior and
the handling of the heterogeneity of the LCC, are melted. Agoras et al. [1] introduced a more systematic method
in which the linearization of the behavior and the heterogeneity of the LCC within the phases are adressed in two
separate steps. The first step makes use of the variational procedure of Ponte Castañeda [7] to obtain a LCC with
heterogeneous eigenstrains within the phases. The second one which also relies on the variational procedure
makes use of the method proposed by Lahellec et al. [4] to reduce the resulting problem to a different LCC with
now homogeneous properties.
In the present study, we reformulate the key idea proposed by Agoras et al. [1] - which consists to deal with
sequentially the linearization of the local behavior and the heterogeneity of the resulting LCC - initially applied
to ideally-plastic phases to the context of elastoplastic composites with hardening phases. Both isotropic and
linear kinematic hardening are considered.
To clearly distinguish our approach from previous works of the literature dealing with the same issue, we first
emphasize that our formulation relies on the initial variational incremental principle introduced by Lahellec and
Suquet [5] in a total form and not on the modified version proposed by Agoras et al. [1] in a rate form, i.e. based
on the strain rate ε̇ instead of the total strain ε. We also stress that our approach is established in primal form
(based on w(ε) and ϕ(α̇)) while a dual formulation was considered by Agoras et al. [1].

Firstly, owing to the non quadratic character of the dissipation potential ϕ(r) the incremental potential J is
difficult to homogenize. To bypass this difficulty a linearized incremental potential J (r)

L is introduced in order to
approach the dissipation potential ϕ(r) by a quadratic function of ε̇p which depends on a viscosity η(r)

εp which is
uniform in phase r.

J
(r)
L

(
x, ε, εp, p, η

(r)
εp

)
= w(r)(ε, εp, p) +

η
(r)
εp

∆t
(εp − εpn) : (εp − εpn) (7)

A key idea of the variational procedure is to add and subtract to the potential J the potential JL (J = JL + J − JL),
such that the first term JL can be homogenized by classical methods for linear media thanks to the quadratic
part, while the difference J − JL can still be evaluated separately.
We obtain an expression of w̃∆ from (5) which depends on JL and ∆J . Moreover, as ΦC(ε̇

p, ṗ) = +∞ when
g(ε̇p, ṗ) > 0, the infimum in this expression of w̃∆ is obtained under the condition g

(
εp−εpn

∆t , p−pn∆t

)
≤ 0.

Following the work of Lahellec and Suquet [5] we approximate the effective free-energy w̃∆ by w̃var∆ as

w̃∆(E) ≈ w̃var∆ (E, {ηεp}) = inf
〈ε〉=E

{
inf

(εp,p)/h(εp,p)≤0
〈JL (ε, εp, p, {ηεp})〉+

〈
stat

(ε̇p,ṗ)/g(ε̇p,ṗ)≤0
∆Jbis (ε̇p, {ηεp})

〉}
(8)
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where h is a rewrite of the function g which depends on εp and p, the potential ∆Jbis = ∆J −∆tΦC and the
notation {ηεp} stands for the set {η(1)

εp , ..., η
(N)
εp }.

Now, we have to compute the stationarity conditions :

— The stationarity of ∆Jbis with respect of (ε̇p, ṗ) leads to :

η
(r)
εp =

1

3 ε̇peq

∂ φ(r)

∂ ε̇peq

(
ε̇peq
)

=
σ

(r)
y

3 ε̇peq
= η

(r)
φ,sct

(
ε̇peq
)

(9)

— The stationarity of w̃var∆ with respect of η(r)
εp gives :

ε̇peq = ε̇p
(r)

=

√
2

3

〈(
εp − εpn

∆t

)
:

(
εp − εpn

∆t

)〉(r)

⇒ η
(r)
φ,sct

(
ε̇peq
)

= η
(r)
φ,sct

(
ε̇p

(r)
)

(10)

— The stationarity of JL with respect of (εp, p) delivers :

1. The cumulated plastic strain p is uniform per phase and defines as : p(r) = p
(r)
n + ∆t ε̇p

(r)

2. The expression of the viscosity : η(r)
εp,sct

(
ε̇p

(r)
)

=
σ
(r)
y +R(r)(p(r))

3 ε̇p
(r)

3. The expression of the plastic strain field : εp =

[
K : L(r) + H(r) + 2

η
(r)
εp,sct

∆t K
]−1

:

[
K : L(r) : ε+ 2

η
(r)
εp,sct

∆t ε
p
n

]
From now, by introducing the expression of εp in the definition of J (r)

L cf. Eq.(7), it is shown that the energy
w

(r)
L takes the form

w
(r)
L (x, ε) = inf

(εp,p)
J

(r)
L (ε, εp, p) = J

(r)
L (ε, εp (ε, εpn)) =

1

2
ε : L(r)

L : ε+ τ
(r)
L (x) : ε+

1

2
f

(r)
L (x) (11)

Such energy corresponds to a LCC with heterogeneous intraphase polarization, τ (r)
L and f (r)

L depending on x
through εpn. The effective energy of this LCC is defined as w̃L(E) = inf〈ε〉=E 〈wL(E)〉. Due to the stationarity

conditions of ∆Jbis with respect of ε̇peq and of w̃var∆ with respect of η(r)
εp , one gets

Σ =
∂w̃∆

∂E
(E) =

∂w̃L
∂E

(E) (12)

Secondly, we implement the above procedure proposed by Lahellec et al. [4] for an elastoplastic behavior with
isotropic and linear kinematic hardening, for which w(r)

L (x, ε) is defined by (11) with constant moduli L(r)
L and

heterogeneous polarization τ (x) and f (r)
L (x) 6= 0. Thus, the variational procedure will be applied to get a classic

LCC with an energy w(r)
0 (approaching the LCC with the energy w(r)

L ) defined as

w0(x, ε) =
N∑
r=1

w
(r)
0 (ε)χ(r)(x), with w

(r)
0 (ε) =

1

2
ε : L(r)

0 : ε+ τ
(r)
0 : ε+

1

2
f

(r)
0 . (13)

The effective free energy of this LCC is given by Willis [10] as

w̃0(E) = inf
〈ε〉=E

〈w0(x, ε)〉 =
1

2
E : L̃0 : E + τ̃ 0 : E +

1

2
f̃0. (14)

From the procedure proposed by Lahellec et al., we obtain, thanks to the relations of Ponte Castañeda and Suquet
[8] the first and second-order moments of ε0. Moreover, Ponte Castañeda and Suquet [8] demonstrated that the
first and second-order moment of the strain field inside the LCC w

(r)
L can be estimated by those of the LCC w

(r)
0 .

So, one gets
εL

(r) = ε0
(r), 〈εL ⊗ εL〉(r) = 〈ε0 ⊗ ε0〉(r) (15)
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The effective behavior of the nonlinear composite can be now computed from the estimate

Σ =
∂w̃∆

∂E
(E) =

∂w̃L
∂E

(E) =
∂w̃0

∂E
(E) = L̃0 : E + τ̃ 0 (16)

Finally, we applied this procedure in the case of an elasto-plastic composites reinforced by spherical linear
elastic particles distributed isitropically (N=2). Making use of the Hashin Strikman estimates, it is possible to
compute the effective behavior of the composite as well as the first and second-order moment of the different
fields in each phase.

4 Applications and discussions

4.1 Case of ideally-plastic matrix and matrix with isotropic or linear kinematic hardening

This section deals with composite materials composed of an elsatoplastic matrix (ideally-plastic and with
isotropic or linear kinematic hardening) reinforced by elastic spherical inclusions which has linear ans isotropic
behavior. These particles are randomly and isotropically distributed in the matrix.
The composites studied are summited to the same loading as Lahellec and Suquet [6]. These authors have
considered a macroscopic strain tensor E in the form of an isochoric extension E33(t) in the axial direction

E(t) = E33(t)

(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)
(17)

Results of our model will be compared to the prediction of the RVP one developped by Lahellec and Suquet [6]
and to Fast Fourier Transform (FFT) simulations carried by [6] on a REV comprised of 50 spherical inclusions
randomly distributed in the matrix.
The same materials parameters as in Lahellec and Suquet [6] are considered. The values of the phases parameters
are the following

Inclusion : c(1) = 0.17, E(1) = 16.368 GPa, ν(1) = 0.4999999

Matrix : E(2) = 8.1846 GPa, ν(2) = 0.4999999, σ
(2)
0 = 100 MPa

(18)
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FIGURE 1: Macroscopic axial stress under a radial loading of the composite comprised of elastic spherical
particles. Comparison between the actual model (solid line), the RVP model [6] (dotted line) and full-field
simulations [6] (dots). (a) Ideally-plastic matrix, (b) Matrix with kinematic hardening, (c) Matrix with isotropic
hardening.

The figure 1 representes the variation of the macroscopic stress during a loading for ideally-plastic matrix(
H(2) = a(2)K = 0 and R(2)(p) = 0

)
, matrix with linear kinematic hardening

(
a(2) = 300 MPa and R(2)(p) = 0

)
and matrix with isotropic hardening

(
a(2) = 0 MPa and R(2)(p) = β(2)pγ

(2)
where β(2) = 100 MPa and γ(2) = 0.4

)
.

We note, in the three cases, a good agreament between our model and the RVP one for the macroscopic axial
stress E33. As the RVP model ours is able to reproduce the Bauschinger effect. It is noticed that the elastic
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state slope between our model and the RVP one is different. This comes from the material coefficients. Indeed,
Lahellec and Suquet considered compressible composite and not incompressible one, so our shear moduli are
differents from them. Moreover, the model decribed the trend of the FFT simulations. Due to the approximation

of the dissipative potential σ(r)
y ε̇peq by a quadratic potential η

(r)
εp

∆t (εp − εpn) : (εp − εpn) the model overestimates
the macroscopic stress.

4.2 Multiple cycles loadings for a matrix with isotropic hardening

In this Section, we explore the predictions of the DIV model when several loading cycles are considered. From
now on, we will only study an elastoplastic matrix with an isotropic hardening characterized by the power law

R(2) (p) = β(2)pγ
(2)
. (19)

We also consider the reinforced composite dealt with by Lahellec and Suquet [6] whose material parameters
are defined by Eq. (18) for the elastic properties of the phases and by the following parameters for the isotropic
hardening

β(2) = 100 MPa, γ(2) = 0.4 . (20)

For an elastic ideally-plastic matrix or an elastoplastic matrix with linear kinematic hardening, it is found that
the macroscopic and local responses are stabilized as soon as the first cyclic loading occurs. This is not the case
for an elastoplastic matrix with isotropic hardening as it can be seen on Fig. 2 which reports for 10 cycles the
evolution of the axial stress and the averages of the axial stress over the phase for both the DIV approach and FE
periodic simulations. As in former sections, the FE simulations are carried out on a periodic cubic cell made of a
single spherical elastic inclusion embedded in an elastic ideally-plastic matrix. On a whole, a close agreement is
observed between the DIV approach and the FE simulations, especially for the macroscopic axial stress and for
the average axial stress in the matrix. As observed on the macroscopic axial stress, the asymmetry characterising
the Bauschinger effect increases continuously with the number of cycles, going from 24,64 Mpa for the first
cycle to 40,6 Mpa for the tenth cycle. This evolution of the asymmetry characterising the Baushinger effect is
accurately captured by the DIV approach. Lastly, it can be seen that the macroscopic and local responses tends
to a limit cycle, thus showing that the DIV approach, in agreement with the FE simulations, predicts a plastic
shakedown when the plastic matrix exhibits isotropic hardening.
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FIGURE 2: Elastically reinforced composite submitted to 10 cycle radial loadings. Case of an elasto-plastic
matrix with isotropic work-hardening. c(1) = 0.17. (a) Macroscopic axial stress, (b) Average axial stress in the
matrix, (c) Average axial stress in the inclusion.

4.3 Case matrix with both isotropic and linear kinematic hardening

This section proposes new data for a composite comprised of an elastoplastic matrix with both kinematic and
isotropic hardening reinforced by elastic spherical particles. The model is compared to Finit Elements Method
(FEM) simulations. The function characterizing the isotropic hardening R(2) is defined as :

R(2)(p) =
(
RM − σ(2)

y

) (
1− e−Bp

)
(21)
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whereB andRM two parameters which define the isotropic hardening. During the MEF computations, an eighth
of a hree dimentional cubic cell with a spherical inclusion in its center was considered. Conditions of symmetry
and periodicity have been set on this cell. During the computations the phases parameters were chossen as the
ones already defined in (18), and the parameters for the isotropic and kinematic hardening were fixed as

RM = 2.1 GPa, B = 0.26, a(2) = 100 MPa (22)
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FIGURE 3: Composite comprised of matrix with both isotropic and linear kinematic hardening and elastic
spherical particles under a radial loading. Comparison between the actual model (solid line) and FEM simulations
(dotted line). (a) Macroscopic stress, (b) Average stress in the matrix, (c) Average stress in the inclusion.

The composite was also submited to an axial loading. We observe in the Fig.3 that the trend of the average stress
over the matrix is exactly the same as the FEM, excepted for the Bauschinger effect which is overestimated by
the model, nevertheless, it is able to reproduce it. On the other hand, it is noted for the average over the inclusion
that the trend is the same as the FEM but the model underestimate the FEM with a maximum error of about 11%.
Moreover the slope between the model and the FEM is different. It is assumed that this difference comes from
the anisotropy in the inclusion which is due to the geometry considered and macroscopic loading applied. These
observations explain the reason why the macroscopic stress has the same trand as the MEF but it underestimate
it with a maximum error of about 3%. However, it is able to capture the Bauschinger effect.

5 Conclusion

In this study we proposed an incremental variational procedure to approach the effective behavior of an
elastoplastic composite with both isotropic and linear kinematic hardening. This method extands the variational
procedure proposed by Agoras et al. [1]. We considered composites comprised of GSM phases which are defined
with two convex potentials (free-energy and dissipation potential). Following Lahellec and Suquet [5] and [6],
the local and macroscopic variational principles are obtained with the introduction of an incremental potential.
Referring to Ponte Castañeda [7] and Agoras et al. [1] this potential is aproached by a linearized one which is
possible to homogenize thanks to its quadratic part. Into taking advantage of the linear comparaison method of
Lahellec et al. [4], the LCC w̃L can be homogenized to get a homogeneous LCC. From this method it is possible
to compute the expressions of the first and second moment of ε0.
When possible, the model predictions have been compared to the RVP ones (Lahellec and Suquet [6]) and to
FFT simulations [6] under an axial loading. We noted that for ideally-plastic, kinematic hardening and isotropic
hardening a good agreement between the model, the RVP one and the FFT simulations for the macroscopic
strain. It is noted that the effective stress of the two model overestimates the numerical simulations. Finally, new
data on composites either with combined isotropic and kinematic hardening or submitted to several loading
cycles have been proposed. Again, the model prediction were compared to FEM simulations. We noted that the
model reproduces the FEM data for the macroscopic stress and the average stress in the matrix. A different slope
was observed for the average stress in the inclusion ; we believe that this difference comes from the anisotropy in
the inclusion due to the geometry and the and to the stress apply by the matrix on the inclusion during the MEF
simulations.
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