

Fissuration dynamique non régulière

F. DUBOIS

frederic.dubois@univ-montp2.fr

Y. MONERIE

yann.monerie@irsn.fr

collaborateur : V. ACARY (INRIA)

Motivations

1/ Injection de Réactivité

2/ Perte de Réfrigérent Primaire

Nonsmooth Fracture Dynamics

Objectifs

mist

- Fissuration des matériaux homogènes et hétérogènes (en statique et dynamique), comportements équivalents
- Amorçage, propagation, post-rupture, gestion des fragments
- ▶ Interactions locales complexes (contact frottant, dilatence, cicatrisation, · · ·)
- Milieux continus, discrets
- Couplages : thermomécanique, fluide/grains, · · ·

Méthode basée sur

- ▷ la méthode des éléments finis cohésifs/volumiques
- les modèles de zone cohésive frottante
- l'approche Nonsmooth Contact Dynamics

Problème d'unicité de la solution, instabilités

- Le cas de 2 solides élastiques adhérents en quasistatique
 - $\triangleright \ \ \text{existence solutions} \in \left\{ v \in \left[H^1(\Omega) \right]^3; v = 0 \text{ p.p. } \Gamma_u; [v_N] \leq 0 \text{ p.p. } \Gamma_c \right\}$
 - ho unicité conditionnelle : $|\lambda \, l/c_0| < 1$

- ▶ plus la "pente adoucissante" est forte, plus l'interface est instable
- Le couplage normal-tangent promeut les instabilités (frottement !)

Une précaution essentielle en fissuration dynamique

- ► Ne pas perturber des ondes de compression (même en traction)
 - ▷ pas d'interpénétration des mailles
 - ▶ besoin de conditions de **contact unilatéral** (non régularisé, ni pénalisé)

Modèle de zone cohésive frottant

► Contact et frottement [Raous, Cangémi, Cocu, Monerie, 1996-2003] - $(\mathsf{R}_{\mathsf{N}} + \mathsf{R}_{\mathsf{N}}^{\text{coh}}) \in \partial I_{\mathbb{R}^+}(u_{\mathsf{N}}), (\mathsf{R}_{\mathsf{T}} + \mathsf{R}_{\mathsf{T}}^{\text{coh}}) \in \partial (\mu \kappa(\beta) |\mathsf{R}_{\mathsf{N}} + \mathsf{R}_{\mathsf{N}}^{\text{coh}}| \parallel \dot{u}_{\mathsf{T}} \parallel)$

► Cohésion:
$$\begin{cases} \mathsf{R}^{\mathsf{coh}} = \beta \left(C_N n \otimes n + C_T \frac{u_{\mathsf{T}} \otimes u_{\mathsf{T}}}{\|u_{\mathsf{T}}\|^2} \right) \cdot [u] + \kappa(\beta) \ p \ n \otimes n \\ \mathsf{R}^{\mathsf{coh}} = \beta \, \mathsf{R}^{\mathsf{coh}}_{\max} \quad \text{[formulation extrinsèque]} \end{cases}$$

 $\blacktriangleright \text{ Evolution endommagement surfacique [Perales et al., 2006; Michel et al., 1994]}$ $\beta = \min \left\{ D_{[0,\delta_c[} (\|[u]\|) + D_{[\delta_c,3\delta_c[} (\|[u]\|) \frac{3\delta_c - \|[u]\|}{\delta_c + \|[u]\|}, \beta_{\min} \right\}$

Dynamique non régulière

► Cinématique des discontinuités

 \triangleright la vitesse $v = \dot{q}$: fonction à Variations Bornées (Continue à Droite)

$$v^+ = \dot{q}^+$$

l'accélération : réécrite en terme de mesures différentielles

$$dv(]a,b]) = \int_{]a,b]} dv = v^+(b) - v^+(a)$$

▷ le déplacement

$$q(t) = q(t_0) + \int_{t_0}^t v^+(t) dt$$

Efforts

mist

▷ l'impulsion contient des termes réguliers et non-réguliers

$$di = rdt + dp$$

Event-driven, time-stepping, NSCD

Détecter les évènements

⊕ ordre d'intégration élevé
⊖ pas de preuve de convergence
⊖ sensibilité aux seuils numériques
⊖ écriture des contraintes en accélération
⊖ gestion des évènements en cascade

► Capturer les évènements

⊕ robuste, stable, preuve de convergence
⊕ écriture des contraintes en vitesse
⊕ gestion des évènements en cascade
⊖ ordre d'intégration faible

lors des impacts $M(q)(v^+ - v^-)d\nu = pd\nu$ entre les impacts $M(q)\gamma dt + F(t,q,v)dt = rdt$

$$egin{aligned} M(q)dv+F(t,q,v^+)dt&=di\ v^+&=\dot{q}^+\ -di\in N_{T_C(q)}\left(v^+
ight) \end{aligned}$$

Schéma en temps NSCD [Moreau, 1983, 1988; Jean, 1999]

$$egin{aligned} M(q_{k+ heta})(v_{k+1}-v_k)-h ilde{F}_{k+ heta}&=I_{k+1}\ q_{k+1}&=q_k+hv_{k+ heta}\ -I_{k+1}\in N_{T_C(ilde{q}_{k+ heta})}(v_{k+1}) \end{aligned}$$

 \triangleright implicite : vitesse, implusion (I = hR)

> à la discression de l'utilisateur : le reste

Précautions supplémentaires en fissuration dynamique

- Non perturbation des propriétés élastiques (même en statique)
 - ▷ limiter la souplesse ajoutée par les modèles "intrinsèques" (à raideur initiale finie)
 - ▷ besoin d'une dépendence des modèles cohésifs à la taille de maille par exemple $10\frac{E}{C_N} \le L_{mesh}$ [Espinosa et Zavattieri, 2003]

Maillage adapté

 $L_{mesh} \leq L_{coh}(v)$ $= \frac{L_{coh}(0)}{A(v)} \quad [Freund, 1989]$ $\longrightarrow 0^+ \quad (v \longrightarrow c_R)$

Une borne inf. pour la souplesse additionnelle

► Comportement élastique

Borne inférieure de Hashin et Shtrickman

$$\mathbb{C}_{coh} = e\left(C_N \mathbb{E}_l + C_T \mathbb{K}_l\right) \quad \text{avec } f = eZ$$
 $\xi = rac{C_N L_{mesh}}{E} imes r(Z, rac{C_N}{C_T}) \ge rac{E^{\,\mathrm{HS}^-}/E}{1 - E^{\,\mathrm{HS}^-}/E}$

Comportement "effectif" des composites en fissuration

Formulation variationnelle à deux champs : $v = E \cdot X + v^{per}$

Fissuration des matériaux à gradient de propriétés

► loi volumique homogène équivalente et loi surfacique homogène équivalente

Conclusion

- Favoriser les formulations génériques : Modèles de Zone Cohésive Frottante (grande variété de matériaux et de phénomènes physiques, extinsèques-intrinsèques, plusieurs formes, paramètres G_{Ic} et/ou R^{max})
- ► Pas d'influence de la forme sur la propagation stationnaire des fissures (influence pour amorçage, sauts de solution, stabilité, $\vec{l} \neq$ constante)
- Efficacité de l'approche volumique-cohésive Forte dépendence au maillage du trajet de fissuration, mais (Très) faible dépendence des propriétés apparentes de fissuration/rupture si l'on respecte · · ·
- Quelques règles pratiques d'utilisation

$$\begin{array}{l} \triangleright \quad \text{Taille de maille} : L_{mesh} \leq \frac{\pi}{8} \frac{E}{(1-\nu^2)} \frac{G_{Ic}}{\left< \mathsf{R}^{\mathrm{coh}} \right>^2} \frac{1}{A(v)} \\ \\ \triangleright \quad \text{Raideur interfaciale} : \frac{C_N}{E} \geq \frac{\alpha}{1-\alpha} \left(1 + \frac{4}{3} \frac{C_N}{C_T} \right) \frac{2(1+\sqrt{2})}{5L_{mesh}} \end{array}$$