

MZC et comportements volumiques non linéaires

F. Feyel, V. Chiaruttini, S. Payet

return on innovation

Modèles numériques pour la fissuration

Approche locale, modèles d'endommagement

THE FRENCH AEROSPACE LAB

Equivalence avec des CZM ?

Fissure localisée

Influence du maillage

En résumé

Tels quels, les CZM

- Ne permettent pas de modéliser la fissuration si le lieu est inconnu
- Éventuellement, en fragmentation, permettent de construire + ou des statistiques moyennes

Retour à un exemple simple

Analyse dimensionnelle

Vision énergétique

1- Tout dans les barres :

$$\mathcal{E} = \mathcal{E}_{el} = 1/2$$

2- Tout dans les interfaces :

$$\begin{array}{rcl} \Delta u &=& 1/n \\ \mathcal{E}_{in} &=& nk \left(\Delta u \right)^2 = k/n \end{array}$$

Quand n augmente, 2 est toujours préférable

$$\lim_{n\to\infty}\mathcal{E}_{in}?$$

Une rigidité initiale infinie n'est pas suffisante...

Modèle plastiquement endommageable

Ajouter un seuil « propre » à un modèle de ZC...

- Formulation à multiplicateur de Lagrange locale, cf par exemple E. Lorentz
- Utilisation d'approches « Galerkin Discontinu »

Galerkin continue

Espace d'approximation continu sur l'ensemble de la structure

Formulation Galerkin discontinue

Espaces d'approximation continus par morceaux Ajout de formulations faibles aux *interfaces inter-éléments* continuité au sens faible

Approches Galerkin-discontinues

Pénalisation intérieure pour les problèmes élastiques [Nitsche 1971] Application à un problème d'élasticité linéaire

$$\boldsymbol{\sigma} = \mathcal{A} \frac{1}{2} \left(\boldsymbol{\nabla} \boldsymbol{u} + (\boldsymbol{\nabla} \boldsymbol{u})^T \right) = K \boldsymbol{\varepsilon}(\boldsymbol{u}), \text{ in } \Omega$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} = \boldsymbol{f}_d \text{ in } \Omega$$

$$\boldsymbol{u} = \boldsymbol{u}_d ext{ on } \partial_{\mathrm{U}} \Omega, \ \boldsymbol{\sigma} \ \boldsymbol{n} = \boldsymbol{F}_{\mathrm{d}} ext{ on } \partial_{\mathrm{F}} \Omega$$

$$\mathcal{D}^{\Omega}$$
 $\partial_{F}\Omega$ $\partial_{i}T$ $\partial_{i}T$ \mathcal{D}_{T} \mathcal{D}_{T} \mathcal{D}_{T}

Formulation Galerkin Discontinue, Opérateurs de moyenne et sauts

$$[\boldsymbol{u}]] = \left\{ egin{array}{c} \boldsymbol{u}^+ - \boldsymbol{u}^-, \ \mathrm{on} \ \partial_\mathrm{i}\mathrm{T} \ \boldsymbol{u}^+, \ \mathrm{on} \ \partial_\mathrm{F}\mathrm{T} \cup \partial_\mathrm{U}\mathrm{T} \cup \end{array}
ight. < \boldsymbol{u} > = \left\{ egin{array}{c} rac{1}{2} \left(\boldsymbol{u}^+ + \boldsymbol{u}^-
ight), \ \mathrm{on} \ \partial_\mathrm{i}\mathrm{T} \ \boldsymbol{u}^+, \ \mathrm{on} \ \partial_\mathrm{F}\mathrm{T} \cup \partial_\mathrm{U}\mathrm{T} \cup \end{array}
ight.$$

Formulation faible bilinéaire symétrique $\int_{K} \boldsymbol{\varepsilon}(\boldsymbol{u}_{h}) : \boldsymbol{\mathcal{A}} : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, \mathrm{d}K - \int_{\partial K} < \boldsymbol{\sigma}(\boldsymbol{v}) > \cdot \boldsymbol{n} \cdot [[\boldsymbol{u}_{h}]] \\
+ < \boldsymbol{\sigma}(\boldsymbol{u}_{h}) > \cdot \boldsymbol{n} \cdot [[\boldsymbol{v}]] \, \mathrm{d}S + \int_{\partial K} \frac{\kappa}{h} [[\boldsymbol{u}_{h}]] \otimes \boldsymbol{n} : \boldsymbol{\mathcal{A}} : \boldsymbol{n} \otimes [[\boldsymbol{v}]] \, \mathrm{d}S \\
= \int_{\partial_{F}K} \boldsymbol{F}_{h}^{D} \cdot \boldsymbol{v} \, \mathrm{d}S$

 $\forall v$ regulier et continu par morceaux sur la triangulation T

Classique

$$\begin{split} \int_{K} \boldsymbol{\varepsilon}(\boldsymbol{u}_{h}) : \boldsymbol{\mathcal{A}} : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, \mathrm{d}K &= \int_{\partial K} < \boldsymbol{\sigma}(\boldsymbol{v}) > \cdot \boldsymbol{n} \cdot [[\boldsymbol{u}_{h}]] \\ + < \boldsymbol{\sigma}(\boldsymbol{u}_{h}) > \cdot \boldsymbol{n} \cdot [[\boldsymbol{v}]] \, \mathrm{d}S + \int_{\partial K} \frac{\kappa}{h} [[\boldsymbol{u}_{h}]] \otimes \boldsymbol{n} : \boldsymbol{\mathcal{A}} : \boldsymbol{n} \otimes [[\boldsymbol{v}]] \, \mathrm{d}S \\ &= \int_{\partial_{F}K} \boldsymbol{F}_{h}^{D} \cdot \boldsymbol{v} \, \mathrm{d}S \end{split}$$

Classique

Analogie CZM

Couplage DG - CZM

- Formulation d'interface GD pendant la phase élastique du modèle cohésif
- Critère de transition en contrainte maximale
- Activation d'un modèle dissipatif
- Idée identique à (*Steinman et al 2004, Levy et al. 2009*)

$$\int_{K} \boldsymbol{\varepsilon}(\boldsymbol{u}_{h}) : \boldsymbol{\mathcal{A}} : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, \mathrm{d}K - \int_{\partial K} < \boldsymbol{\sigma}(\boldsymbol{v}) > \cdot \boldsymbol{n} \cdot [[\boldsymbol{u}_{h}]] \\ + < \boldsymbol{\sigma}(\boldsymbol{u}_{h}) > \cdot \boldsymbol{n} \cdot [[\boldsymbol{v}]] \, \mathrm{d}S + \int_{\partial K} \frac{\kappa}{h} [[\boldsymbol{u}_{h}]] \otimes \boldsymbol{n} : \boldsymbol{\mathcal{A}} : \boldsymbol{n} \otimes [[\boldsymbol{v}]] \, \mathrm{d}S \\ = \int_{\partial_{F}K} \boldsymbol{F}_{h}^{D} \cdot \boldsymbol{v} \, \mathrm{d}S$$

$$\int_{K} \boldsymbol{\varepsilon}(\boldsymbol{u}_{h}) : \boldsymbol{\mathcal{A}} : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, \mathrm{d}K - (1 - \alpha) \int_{\partial K} \langle \boldsymbol{\sigma}(\boldsymbol{v}) \rangle \cdot \boldsymbol{n} \cdot [[\boldsymbol{u}_{h}]] \\ - \langle \boldsymbol{\sigma}(\boldsymbol{u}_{h}) \rangle \cdot \boldsymbol{n} \cdot [[\boldsymbol{v}]] \, \mathrm{d}S + \int_{\partial K} \frac{\kappa_{s}}{h} [[\boldsymbol{u}_{h}]] \otimes \boldsymbol{n} : \boldsymbol{\mathcal{A}} : \boldsymbol{n} \otimes [[\boldsymbol{v}]] \, \mathrm{d}S \\ = \int_{\partial_{F}K} \boldsymbol{F}_{h}^{D} \cdot \boldsymbol{v} \, \mathrm{d}S + \alpha \int_{\partial K} \boldsymbol{P} \left([[\boldsymbol{u}_{h}]] \right) \cdot [[\boldsymbol{v}]] \, \mathrm{d}S$$

Simulation de fissuration sur une éprouvette plane perforée en présence d'une fissure initiale sous un chargement de traction verticale

Solution de référence obtenue à l'aide d'une approche énergétique G-q, avec un critère de bifurcation en taux de restitution d'énergie maximale et une avancée de pointe de fissure par remaillage (thèse de P. O. Bouchard, 2000)

Résultat

CZM généralisé

Mauvais conditionnement Convergence assurée **Convergence délicate**

Approche hybride

DG/CZM

Sensibilité à la taille de maille

Limitations intrinsèques

- Nécessité d'un maillage très fin (très couteux en 3D)
- La dissipation d'énergie est nécessairement surestimée
 - A cause d'un trajet de fissuration trop long

• A cause des nombreux branchements non fructueux

... Rien à faire : les CZM seuls ne peuvent pas décrire proprement un trajet de fissuration dont le lieu est inconnu

- Il faut (avis personnel !) les coupler à un modèle continu
- Soit de d'endommagement
- Soit énergétique global
- Eventuellement les deux

- Thèse de S. Payet
 - Transition à $D \approx 1$
 - Adaptativité de maillage
 - Insertion d'une fissure
 - Thèse de S. Cuviliez
 - Transition à D < 1
 - Conservation de l'énergie
 - Aspects théoriques

J. Besson E. Lorentz S. Michel-Ponnelle J. Laverne

Mesh dependency

Weird damage path Structure breaks without dissipation

Scale coupling using non local models

Regularized (u, θ, p, \bar{P}) elements

Works well, but ... *expensive* ! → mesh adaptivity

[Feld-Payet, Besson, Feyel, 2010]

Mesh adaptativity

Meshes vs. damage evolution

- Crack insertion ?
- Reduce comp. Costs
- Reduce num. problems
- The end-user wants a crack

TU / Eindhoven collaboration

Crack insertion and propagation

Continuous description

 Localization band / volume
 Remeshing techniques (accuracy,cost)

Dis-continuous description

- Localization line / surface
 - Crack orientation criterion

ONERA

THE FRENCH AEROSPACE LAB

- Crack insertion
- Energy balance ? (D \approx 1)

[Hambli 01, Simone et al 03, Mediavilla 05]

Crack location = maximum of damage

2D: Crack initiation = maximum of damage + crack direction

D*

 $D^* > D^*_{min}$

 $D^* > 1 - \varepsilon$

 $D^* > 1 - \varepsilon$

 $D^* > 1 - \varepsilon$

