Critère énergétique, modèle cohésif et endommagement continu

Eric Lorentz Sam Cuvilliez

Contexte industriel : production d'électricité

FOCUS

Propagation de fissures dans les structures en béton

(échelle : plusieurs mètres)

initiation	critères	OK
amorçage	contrainte / ténacité	(post-traitement)

initiation	critères	OK
amorçage	contrainte / ténacité	(post-traitement)
propagation (trajet connu)	zones cohésives	non linéaire raide instabilités

initiation amorçage	critères contrainte / ténacité	OK (post-traitement)
propagation (trajet connu)	zones cohésives	non linéaire raide instabilités
trajet de fissuration physique fine	endommagement continu	non linéaire raide instabilités localisation

initiation amorçage	critères contrainte / ténacité	OK (post-traitement)
propagation (trajet connu)	zones cohésives	non linéaire raide instabilités
trajet de fissuration physique fine	endommagement continu	non linéaire raide instabilités localisation

Quelles garanties de cohérence ?

Plan de la présentation

- 1. Modèle d'endommagement à gradient
- 2. De l'endommagement à la fissure cohésive
- 3. Comparaisons numériques en 2D

Endommagement à gradient

Hypothèses de comportement

Endommagement quasi-fragile

• Elasticité + endommagement

Hypothèses simplificatrices

- Endommagement isotrope
- Pas de dommage de compression
- Pas de fermeture de fissures
- Pas de déformations irréversibles

Modélisation non locale

- Description physique adaptée aux forts gradients
- Introduction du gradient d'endommagement

Variables d'état

Déformation ε

Endommagement a

Variables d'état

Déformation ε Endommagement *a* **Contrainte - déformation**

 $\boldsymbol{\sigma} = \mathbf{A}(a)\mathbf{E} : \boldsymbol{\varepsilon}$

Variables d'état

Déformation ε Endommagement *a*

Contrainte - déformation

 $\boldsymbol{\sigma} = \mathbf{A}(a)\mathbf{E}:\boldsymbol{\varepsilon}$

Equation d'évolution

$$f(\varepsilon, a) = -A'(a)w(\varepsilon) - k + c\nabla^2 a$$
$$f \le 0 \quad ; \quad \dot{a} \ge 0 \quad ; \quad \dot{a} f = 0$$

Variables d'état

Déformation ε Endommagement *a*

Contrainte - déformation

 $\boldsymbol{\sigma} = \mathbf{A}(a)\mathbf{E}:\boldsymbol{\varepsilon}$

Conditions aux limites

 $\nabla a \cdot \mathbf{n} = 0$ $\llbracket a \rrbracket = 0 \qquad \llbracket \nabla a \rrbracket \cdot \mathbf{v} = 0$

Equation d'évolution

$$f(\varepsilon, a) = -A'(a)w(\varepsilon) - k + c\nabla^2 a$$
$$f \le 0 \quad ; \quad \dot{a} \ge 0 \quad ; \quad \dot{a} f = 0$$

Validation physique

Kobayashi et al. (1984)

De l'endommagement à la fissure cohésive

Problème de la barre en traction

$$\sigma = A(a) E \varepsilon$$

f(\varepsilon, a) = -A'(a) $\frac{E \varepsilon^2}{2} - k + c \nabla^2 a$
A(a) = $\frac{(1-a)^2}{1+(m-2)a+(1+pm)a^2}$

Problème de la barre en traction

Paramètres macroscopiques

Paramètres internes

$$\sigma = \mathcal{A}(a) \boldsymbol{E} \varepsilon$$

$$f(\varepsilon, a) = -A'(a)\frac{E\varepsilon^2}{2} - k + c\nabla^2 a$$

$$A(a) = \frac{(1-a)^2}{1+(m-2)a+(1+pm)a^2}$$

Paramètres macroscopiques

Paramètres internes

$$\sigma = \mathcal{A}(a) \boldsymbol{\underline{E}} \boldsymbol{\varepsilon}$$

$$f(\varepsilon, a) = -A'(a)\frac{E\varepsilon^2}{2} - k + c\nabla^2 a$$

$$A(a) = \frac{(1-a)^2}{1+(m-2)a+(1+pm)a^2}$$

Paramètres macroscopiques

Longueur interne

$$D = \sqrt{\frac{2c}{k}}$$

Paramètres macroscopiques

Paramètres internes

 $\sigma = A(a) \boldsymbol{\underline{E}} \varepsilon$

$$f(\varepsilon, a) = -A'(a)\frac{E\varepsilon^2}{2} - k + c\nabla^2 a$$

$$A(a) = \frac{(1-a)^2}{1+(m-2)a+(1+pm)a^2}$$

Paramètres macroscopiques

Longueur interne D

$$=\sqrt{\frac{2c}{k}}$$

Module de Young

Energie de fissuration G

$$G_f = \frac{4}{3}kD$$

Contrainte critique

$$\sigma_{y} = \sqrt{\frac{3}{2} \frac{EG_{f}}{mD}}$$

Ouverture critique

$$\delta_c = \frac{3\pi}{4} \frac{G_f}{\sigma_y} \sqrt{p+1}$$

Normalisation

Passage à la limite

Normalisation

$$a(a_0,x) = \overline{a}\left(a_0,\frac{x}{D}\right)$$

Passage à la limite

Le profil d'endommagement est homothétique avec *D*

Normalisation

 $a(a_0,x) = \overline{a}\left(a_0,\frac{x}{D}\right)$

$$\delta(a_0) = \frac{G_f}{\sigma_v} \overline{\delta}(a_0) + 2D \frac{\sigma_v}{E} \overline{\sigma}(a_0)$$

Passage à la limite

Le profil d'endommagement est homothétique avec *D*

Le terme "d'allongement élastique" tend vers zéro

Normalisation

 $a(a_0,x) = \overline{a}\left(a_0,\frac{x}{D}\right)$

$$\delta(a_0) = \frac{G_f}{\sigma_v} \overline{\delta}(a_0) + 2D \frac{\sigma_v}{E} \overline{\sigma}(a_0)$$

 $\sigma(a_0) = \sigma_y \,\overline{\sigma}(a_0)$

Passage à la limite

Le profil d'endommagement est homothétique avec *D*

Le terme "d'allongement élastique" tend vers zéro

La réponse en contrainte est invariante

Modèle cohésif asymptotique

Comparaisons numériques en 2D

Eprouvette virtuelle "DCB élargie"

$E = 30\ 000\ MPa$	$\sigma_y = 3 \text{ MPa}$
v = 0.2	$G_f = 0.1 \text{N/mm}$
2D = 100 mm	$\delta_c = 0.12 \text{ mm}$

Eprouvette virtuelle "DCB élargie"

Comparaison Griffith / fissure cohésive (1/2)

Force - déplacement

17

Comparaison Griffith / fissure cohésive (2/2)

Courbe de résistance (R – curve)

18

Comparaison fissure cohésive / endommagement (1/2)

Force - déplacement

Comparaison fissure cohésive / endommagement (2/2)

Déplacement d'ouverture le long de la fissure

Conclusion

Acquis

Simulation de la fissuration et du débit de fuite

- Capacité à simuler des structures de grande taille
- Acquisition de l'ouverture de fissure sans traitement particulier

Cadre de cohérence des formulations de la rupture

- Paramétrisation cohérente des modèles
- Construction d'un modèle CZM asymptotique (1D)
- Cohérence approchée en 2D : G / CZM / CDM

Perspectives

- Vérifier numériquement la convergence $(D \rightarrow 0)$
- Démonstration analytique de convergence sur l'énergie (?)
- Extension : modes mixtes, refermeture, trajets courbes, 3D

Merci

Problème de la barre en traction

$$\begin{aligned} & \mathsf{Contrainte} - \mathsf{Ouverture} \\ & \delta(a_0) = \frac{2\sigma(a_0)}{E} \Bigg[D + \int_{0}^{a_0} \Big(\mathsf{A}(a)^{-1} - 1 \Big) \mathsf{G}(a_0, a)^{-1/2} \, da \ \\ & \sigma(a_0) = \sqrt{\frac{2Ek \, a_0}{\mathsf{A}(a_0)^{-1} - 1}} \end{aligned}$$

Localisation de l'endommagement

Modèle

$$\sigma = A(a) E \varepsilon$$

 $f(\varepsilon, a) = -A'(a) \frac{E \varepsilon^2}{2} - k + c \nabla^2 a$

Profil d'endommagment

$$x(a_0,a) = \int_{a}^{a_0} G(a_0,s)^{-1/2} ds$$

 $a_u(x) = \left(1 - \frac{x}{D}\right)^2$ avec $D = \sqrt{\frac{2c}{k}}$

$$G(a_0, a) = \frac{2k a_0}{c} \left[\frac{a}{a_0} - \frac{A(a)^{-1} - 1}{A(a_0)^{-1} - 1} \right]$$

Réponse de la barre en traction

Profil d'endommagement

Contrainte – Ouverture

