

# Caractérisation de la propagation de fissure pour l'AS7U05G03 sous un chargement thermomécanique de fatigue

Application au dimensionnement de structures automobiles en alliage d'aluminium Al-Si

# Elias MERHY <sup>1,\*</sup>

<sup>1</sup>PSA Peugeot Citroën, Route de Gisy, 78943 Vélizy-Villacoublay Cedex, France

\*elias.merhy@mpsa.com

## Problématique industrielle

#### Fissuration des culasses des moteurs HDI



Chargement mécanique : cycles de pression d'explosion

**Chargement thermique** : cycles démarrage / arrêt du moteur  $\implies$  fissuration du pontet inter soupapes

#### Problématique industrielle

#### Chargement thermomécanique des culasses des moteurs HDI



À froid : pontet sollicité en traction (frettage des sièges)

À chaud : pontet sollicité en compression (gradient thermique)

#### Cyclage thermique

(cycles démarrage/arrêt)

⇒ fatigue thermomécanique (anisotherme)

#### **Problématique industrielle**

#### Essais type choc thermique sur banc chalumeau culasse (PSA)

- Fissuration pontet inter soupapes (Echappement Admission).
- Amorçage face flamme coté conduit échappement.





Essais à différents : Amplitude de charge, Rapport de charge, température et fréquence

# **Objectifs**:

Méthode de dimensionnement basée sur la tolérance à l'endommagement ; Loi de propagation sous chargement anisotherme

#### Gains escomptés :

- Gammes de validation des composants moins sévères
- Gain potentiel en kW sur moteur
- Gain potentiel en coût de développement/fabrication culasse

5

# Plan

- 1 Problématique industrielle
- 2 Analyse numérique des champs thermomécaniques dans la culasse
- 3 Caractérisation expérimentale de la propagation de la fissure
- 4 Loi de propagation proposée
- 5 Conclusions

# Plan

1 – Problématique industrielle

## 2 – Analyse numérique des champs thermomécaniques dans la culasse

- 3 Caractérisation expérimentale de la propagation de la fissure
- 4 Loi de propagation proposée
- 5 Conclusions

## 2 – Analyse numérique des champs thermomécaniques dans la culasse



01/10/2012



#### 2 – Analyse numérique des champs thermomécaniques dans la culasse

2 – Analyse numérique des champs thermomécaniques dans la culasse

Bilan de l'analyse numérique

- Vérification de la criticité du pontet inter soupape
- Chargement anisotherme à rapport de charge négatif (R < 0)
- Deux zones de comportement différent dans le pontet:
  - 1 Zone à comportement élastique
  - 2 Zone à comportement plastique

# Plan

- 1 Problématique industrielle
- 2 Analyse numérique des champs thermomécaniques dans la culasse
- 3 Caractérisation expérimentale de la propagation de la fissure
- 4 Loi de propagation proposée
- 5 Conclusions

#### Essais réalisés

Chargement anisotherme à R<0 (T varie, effet compression)

Matériau élasto-viscoplastique (effet du temps/fréquence)

Caractérisation générale de La propagation de la fissure 46 essais de fissuration (isothermes et anisothermes)

**T** varie : 20°C, 100°C, 150°C et 170°C

*R* varie : -1, -0.5, 0.1, 0.7

f varie : 0.005Hz, 0.05Hz, 1Hz, 20Hz

 $\rightarrow$ 

## 3 – Caractérisation expérimentale de la propagation de la fissure Prélèvement et géométrie des éprouvettes CT16 et SEN















Essais isothermes sur CT16 à R>0 et  $\Delta K$  croissant



Effet important de plasticité cumulée ?

Elias MERHY - PSA PEUGEOT CITROËN



#### Essais isothermes sur CT16 à R>0 et $\Delta K$ croissant





Essais isothermes sur CT16 à R>0,  $\Delta K$  constant et fréquence variable



3 – Caractérisation expérimentale de la propagation de la fissure Essais isothermes sur SEN à R < 0,  $\Delta K$  constant et fréquence variable



Ο

$$\frac{da}{dN_{R0,1}} = \frac{da}{dN_{R-0,5}} = \frac{da}{dN_{R-1}} \bigg|_{\substack{T=150^{\circ}C, \\ f=0.005Hz \\ K=13.3MPa\sqrt{m}}}$$

Elias MERHY - PSA PEUGEOT CITROËN

Essais isothermes sur SEN à R < 0,  $\Delta K$  constant et fréquence variable



#### Sous compression macroscopique :

- Déformation elliptique de la matrice au niveau de l'interface  $\alpha$ -Al/Si
- Particule Si non déformé ⇒ compatibilité d'interface ⇒ force de réaction sur la matrice
- x dislocations géométriquement nécessaires  $\implies$  activation de systèmes de glissement additionnels  $\implies \mathcal{E}_{22}^{vp} < 0$
- Champ local de contrainte résiduelle de traction

Elias MERHY - PSA PEUGEOT CITROËN

2

Essais isothermes sur SEN à R < 0,  $\Delta K$  constant et fréquence variable

$$\frac{da}{dN}_{R<0} = \Delta a \Big|_{1 \text{ cycle}} = \int_{t}^{t+t^{+}} \frac{da}{dt} dt + \int_{t+t^{+}}^{t+T} \frac{da}{dt} dt = \frac{da^{+}}{dN}_{R<0} + \frac{da^{-}}{dN}_{R<0}$$
Hypothèse:  

$$\frac{da^{+}}{dN}_{R<0} = \frac{da}{dN}_{R<0} = \frac{da}{dN}_{R=0} \Big|_{K_{max}, f, T}$$

$$\frac{da^{-}}{dN}_{R<0} = \frac{da}{dN}_{R<0} - \frac{da}{dN}_{R-0} \Big|_{K_{max}, f, T}$$

$$\frac{da^{-}}{dN}_{R<0} = \frac{da^{-}}{dN}_{R<0} - \frac{da}{dN}_{R<0} \Big|_{K_{max}, f, T}$$

$$\frac{da^{-}}{dN}_{R<0} = \frac{da^{-}}{dN}_{R<0} - \frac{da}{dN}_{R<0} \Big|_{K_{max}, f, T}$$

$$\frac{da^{-}}{dN}_{R<0} = \frac{da^{-}}{dN}_{R<0} - \frac{da^{-}}{dN}_{R<0} \Big|_{K_{max}, f, T}$$

$$\frac{da^{-}}{dN}_{R<0} = \frac{da^{-}}{dN}_{R<0} - \frac{da^{-}}{dN}_{R<0} \Big|_{K_{max}, f, T}$$

$$\frac{da^{-}}{dN}_{R<0} = \frac{da^{-}}{dN}_{R<0} - \frac{da^{-}}{dN}_{R<0} \Big|_{K_{max}, f, T}$$

Essais anisotherme sur SEN sous :  $R = -0.5, f \approx 0.005$ Hz,  $T_{min}(\sigma_{max}) = 90$ °C,  $T_{max}(\sigma_{min}) = 170$ °C et  $\Delta K$  croissant



#### Bilan sur la caractérisation expérimentale de la propagation

- Mécanisme de propagation progressive et mixte (à R > 0) : Fissuration par fatigue à faible K → Rupture ductile à K élevé.
- Effet notable de la fréquence sur la vitesse de propagation :
  - à haute fréquence :  $(\Delta K, T)$
  - à basse fréquence :  $(K_{max}, T)$
- La partie compressive des cycles à R < 0 provoque une augmentation de la vitesse de propagation totale due à un effet de plastification locale induisant des  $\sigma^{res} > 0$ .
- Pour un chargement cyclique anisotherme et à *R*<0, la vitesse de propagation peut être déduite des vitesses sous conditions isothermes et à *R*>0 et *R*<0.
- Vitesse de propagation peut être caractérisée par  $r_{\rm p}^{\rm mon}$  et  $\Delta \varepsilon_{\rm ég}^{\rm vp}$ .

# Plan

- 1 Problématique industrielle
- 2 Analyse numérique des champs thermomécaniques dans la culasse
- 3 Caractérisation expérimentale de la propagation de la fissure
- 4 Loi de propagation proposée
- 5 Conclusions



Le modèle EF de la culasse a un maillage de l'ordre de 200 µm dans le pontet ; Temps CPU de calcul de 20 cycles ≈ 1 000 000 s (7 jours en temps réel)

Elias MERHY - PSA PEUGEOT CITROËN

 $\Delta \varepsilon_{\acute{e}a}^{vp}$ 

et

Forme analytique de

rmon

01/10/2012

#### 4 – Loi de propagation proposée

 $\Delta \varepsilon_{\acute{e}q}^{vp}(r, \theta)$  et  $r_p^{mon}(\theta = 0^\circ)$  sous forme de relations analytiques :

$$\frac{da}{dN} = C_1 \int_0^{\frac{\pi}{2}} \int_0^{r_p^{\text{mon}}(\theta=0)} \Delta \mathcal{E}_{\acute{eq}}^{vp}(r,\theta) r dr d\theta$$

Solution asymptotique (HRR) de Riedel et Rice pour un matériau viscoélastique

loi de fluage en puissance de type Norton :

$$\dot{\varepsilon} = \frac{\dot{\sigma}}{E} + \dot{\varepsilon}_0 \left(\frac{\sigma}{\sigma_0}\right)^n$$

Solution de Riedel et Rice en fluage primaire:

Vitesse de déformation viscoplastique :

$$\dot{\boldsymbol{\mathcal{E}}}_{\acute{\mathrm{eq}}}^{\mathrm{vp}} = \left\langle \frac{J_2 \left( \boldsymbol{\sigma}_{ij} - \boldsymbol{X}_{ij} \right) - \boldsymbol{\sigma}_y(T)}{\eta(T)} \right\rangle^{m(T)}$$

Solution proposée pour l'AS7U05G03

(matériau élasto-viscoplastique)

Solution équivalente à celle de Riedel et Rice :

$$\dot{\varepsilon}_{ij}(r,\theta,t) = \dot{\varepsilon}_0 \left( \frac{K_{\rm I}^2(t)(1-\nu^2)}{\dot{\varepsilon}_0 \sigma_0 I_n r. E(n+1)t} \right)^{\frac{n}{n+1}} \tilde{\varepsilon}_{ij}(\theta,n)$$

$$\dot{\varepsilon}_{\text{éq}}^{\text{vp}}(r,t,T) = \dot{\varepsilon}_{0} \left( \frac{K_{1}^{2}(t) \left( \frac{\sigma_{v}(r,t,T)}{\sigma_{y}(T) + X(r,t,T) + \sigma_{v}(r,t,T)} \right)^{2} (1 - v^{2})}{\dot{\varepsilon}_{0} \sigma_{y}(T) r.E(m(T) + 1) t.\eta(T)} \right)^{\frac{m(T)}{m(T) + 1}}$$
25 01/10/2012

Elias MERHY - PSA PEUGEOT CITROËN

4 – Loi de propagation proposée

Validation de la loi

Inclus : effet d'histoire

Inclus : effet d'histoire + effet compression



## 4 – Loi de propagation proposée

#### Implémentation et démarche numérique



# Plan

- 1 Problématique industrielle
- 2 Analyse numérique des champs thermomécaniques dans la culasse
- 3 Caractérisation expérimentale de la propagation de la fissure
- 4 Loi de propagation proposée
- 5 Conclusions

#### 5 – Conclusions

- Mécanisme de propagation de fissure dans l'AS7U05G03 lié à la microstructure ( $\alpha$ -Al / ténacité Si / cohésion  $\alpha$ -Al, Si et le SDAS) ;Influencées par  $r_p^{mon}$  et  $\Delta \varepsilon_{\acute{e}a}^{vp}$
- Fatigue à faible  $K \rightarrow$  Rupture ductile à K élevé
- Nouvelle loi de propagation à 1 paramètre matériau ( $C_1$  ou  $C_2$ ) a été proposée et validée.
  - Loi basée sur la somme de  $\Delta arepsilon_{\mathrm{\acute{e}q}}^{\mathrm{vp}}$  devant la pointe
  - Loi prend en compte les effets de :
    - + Fatigue
    - + Chargement monotone
    - + Histoire (Plasticité cumulée)
    - + Chargement compressif

# Merci pour votre attention