

Analyse d'assemblages boulonnés par corrélation d'images

J. de Crevoisier, T. Cazes L. Champaney, N. Swiergiel (AIRBUS), F. Hild

école normale supérieure paris-saclay universite

3 M Bolts in Assemblies*

- Reliable control of bonding of composites / maintenance?
- Many parameters influence assembly to transfer load, or to dissipate energy
- Sizing based on finding most loaded bolt
- New experimental tools: image correlation

*[https://lejournal.cnrs.fr/videos/la-si-delicate-physique-des-trous]

Test Pyramid

LAt

Multiscale Modeling of Bolted Assemblies

[Guguin et al., 2016, Adv. Model. and Simul. in Eng. Sci. 3(16) pp. 1-18]

Test and Simulation Pyramid

LOt

Toward Virtual Tests?

Bolted Assemblies?

Challenges:

Mechanical stresses + thermal stresses (difference between coefficients of thermal expansion) + assembly stresses

→ Improved understanding of load transfers during the life cycle of an aircraft for optimized sizing

Background

Case study: Standard method

Challenges

- Discriminate and quantify load transfer modes
- Minimize instrumentation cost
- Reliability of measurements
- Identification of characteristic parameters (e.g., rigidity, coefficient of friction)
- Comparisons between test and computation

Outline

- Introduction
- Double lap joint w/ single bolt (fatigue)
- Load transfer in 4-bolt assembly
- Conclusion & perspectives

Experimental Protocol

[de Crevoisier et al., 2012, Exp. Mech. 52 (6), pp.561-572]

Bolt Load Cell

LAt

Bolt Load Cell

Int

Studied Assemblies

Hybrid assembly (DLS):

- 2 Al alloy plates (2024)
- 1 carbon / epoxy composite plate (32 plies)
- 3 configurations:
 - Reference
 - Severe (sandblasted)
 - Reduced bolt tension (30%)
- 2 methods (DIC):
 - Discrete
 - 2D fields

How Classical?

Topic*: "digital image correlation" & "friction coefficient"

*[Web of Science, accessed on January 21, 2021]

Analysis of Edge

Int.

Comparison w/ extensometer First cycle

Changes w/ Number of Cycles

Numerical Model (Cofast*) Constant Gap + 3D Friction + Symmetry

Ζ

*[Champaney et al., 2008, Comput. Mech. 42 pp. 305-315]

Secant Stiffness (Simulation): Good Indicator

Secant Stiffness (Simulation): Good Indicator

Identification Results

Post-mortem Observations (T)

Full-Field Validation

- Measured field $\underline{\mathbf{u}}_{meas}(\underline{\mathbf{x}})$
- Computed field $\underline{\mathbf{u}}_{comp}(\underline{\mathbf{x}})$
- Rigid body motions $\underline{\mathbf{u}}_{rbm}(\underline{\mathbf{x}}) = \underline{\mathbf{u}}_0 + \underline{\mathbf{\omega}} \times \underline{\mathbf{x}}$
- Validation residuals

$$\rho = \min_{f,\underline{\mathbf{u}}_0,\underline{\mathbf{\omega}}} \sum_i \left(\underline{\mathbf{u}}_{meas}(\underline{\mathbf{x}}_i) - \underline{\mathbf{u}}_{comp}(\underline{\mathbf{x}}_i) - \underline{\mathbf{u}}_0 - \underline{\mathbf{\omega}} \times \underline{\mathbf{x}}_i \right)^2$$

Full-Field Validation

Full-Field Validation

Outline

Introduction

- Double lap joint w/ single bolt
- Load transfer in 4-bolt assembly
- Conclusion & perspectives

Extension to Multiple Fastening

[Cazes, 2009, Internal report, EADS]

Strain Gauges

- 17 gauges :
- 14 on the face
- 3 on the edge

Transfer Ratio?

$$\begin{cases} F = E^{1}S^{1}(\varepsilon_{01}^{1} + \varepsilon_{01}^{3}) \\ F - (F_{1}^{1} + F_{1}^{3}) = E^{1}S^{1}(\varepsilon_{12}^{1} + \varepsilon_{12}^{3}) \\ F - (F_{1}^{1} + F_{1}^{3} + F_{2}^{1} + F_{2}^{3}) = E^{1}S^{1}(\varepsilon_{23}^{1} + \varepsilon_{23}^{3}) \\ F - (F_{1}^{1} + F_{1}^{3} + F_{2}^{1} + F_{2}^{3} + F_{3}^{3}) = E^{1}S^{1}(\varepsilon_{34}^{1} + \varepsilon_{34}^{3}) \\ F = F_{1} + F_{2} + F_{3} + F_{4} \end{cases}$$

$$\begin{cases} F = E^2 S^2 \varepsilon_{45}^2 \\ F_1^2 + F_2^2 + F_3^2 = E^2 S^2 \varepsilon_{34}^2 \\ F_1^2 + F_2^2 = E^2 S^2 \varepsilon_{23}^2 \\ F_1^2 = E^2 S^2 \varepsilon_{12}^2 \\ F = F_1 + F_2 + F_3 + F_4 \end{cases}$$

Int

Transfer Ratio vs. Applied Force

Validation

33

Ot

Dissipated Energy

34

Conclusion

- Improvement of experimental protocol
- In spite of difficult context and low image definition, DIC has shown its ability to provide quantitative information in analysis of single and multi-bolt assemblies
- Evolution of friction coefficient and transfer ratios
- Calculation of dissipated energy

Outlook

Test / simulation interactions

LAt

Merci de votre attention !

Computed / measured fields

COFAST*

Q4-DIC**

*[Champaney *et al.*, 1999, *Comput. Struct.* 73 249-266] **[Besnard *et al.*, 2006, *Exp. Mech.* 46 789-803]

Identification residual

Tf = 6000 N