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Many issues...

The talk will mainly focus on Formulation and Solution algorithms.

1. Solver

2. Initialization

3. Regularisation

4. Occultation + light effects + pixel size

→ Towards a new photometric formulation

This talk won’t consider patterning problems and other experimentally related issues
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1. SOLVER
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FE-DIC: Algebraic setting

• Gray level residual r ∈ Rm
[Horn & Schunk 81] :

r(x, u) = f(x)− g ◦ φ(x, u).

m number of pixels or quadrature points.

• Unknown transformation φ(x, u)

φ(x, u) = x + N(x) u

N(x) matrix of basis functions, u ∈ Rn DOF vector, n: number of DOF

• An unconstrained non-linear least square problem:

u? = arg min
Rn

j(u) with j(u) =
1

2
r(x, u)T r(x, u)
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What is a descent direction?

• Principle of descent algorithms:

u(k+1) = u(k) + α · d

◦ d: search direction (many choices: next slide)
◦ α: step size (line search)

• important convergence condition: d a descent direction iff:

j(uk ) > j(uk+1) ⇒ ∇j(k)T d < 0 → −b
(k)
G

T
d < 0

DIC functional’s gradient: ∇j (k)T = −NT∇G
(

u(k)) r(x, u(k))︸ ︷︷ ︸
≈b

(k)
G

∇G(u): a m × m diagonal matrix that collects the values of ∇g ◦ φ(xp, u)
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How to choose search direction?

• Gradient descent (or Steepest descent):

d = b
(k)
G

• Newton’s method:

H
(k)
j d = b

(k)
G

where

functional Hessian: H
(k)
j = NT∇G(u(k))∇G(u(k))N− NT Hg(u(k))R(u(k))N

Image hessian: Hg(u), m × m diagonal matrix that collect, Hg ◦ φ(xp, u)
GL Residual: R(u), m × m diagonal matrix that collect, r(xp, u)

• Gauss Newton method:

H̃
(k)
j d = b

(k)
G

where the Hessian: H̃
(k)
j = NT∇G(u)∇G(u)N
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Fast DIC solvers = Constant RHS Operator

• Quasi Gauss-Newton: replace ∇G(u)→∇F
[Réthoré 10] [Leclerc et al. 11] [Hild & Roux 12] [Passieux & Périé 12] [van Beeck et al. 14]

[Wittevrongel et al. 15] [Neggers et al. 16] [Buljac et al. 18]

˜̃Hj d = b
(k)
F

Approx. Hessian: ˜̃Hj = NT∇F ∇F N (does not depend on (k))

Approx. RHS: b
(k)
F = NT∇F r(u)

X Very fast... but conditionnally fulfills the Descent Direction condition!

Condition: Positivity of F = I + ∇u
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A first example: Rotation

• Rigid body rotation 0 < θ < 180◦ [Neggers et al. 16]

Initialized by u0 = u(θex − 1.8◦)

with, from a continuous point of view, g1.8(x) = g72(x + u70.2)

JC Passieux 8/38
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A first example: Rotation

• Rigid body rotation 0 < θ < 180◦ [Neggers et al. 16]
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A first example: Rotation

• Rigid body rotation 0 < θ < 180◦ [Neggers et al. 16]

d is a descent direction up to 90◦

May require to adjust the step size: u(k+1) = u(k) + α · d
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ICGN FE-DIC

Inverse Compositional Gauss-Newton (ICGN)

• First proposed by Baker & Matthews [Baker & Matthews 01]

Many variants (compositional, inverse, additive, forward...) [Baker & Matthews 04] [Tong 13]

Subset-DIC [Tong 13] [Pan et al. 13] [Sanchez 16] [Stanier et al. 16]

Subset-DVC [Pan et al. 14]

• Idea of classic DIC: find each correction d such that

f(x) ≈ g ◦ φ(x, u(k) + d) ⇒ H̃
(k)
j = NT∇G(u(k))∇G(u(k))N

⇒ ˜̃H(k)

j = NT∇F∇F N

• Idea of ICGN: find each correction −d̃ such that

f ◦ φ(x,−d̃) ≈ g ◦ φ(x, u(k)) ⇒ H̃
(k)
j = NT∇F∇F N

... same operator and right hand side as quasi-GN!!
The only difference lies in the way the running approximation of u(k) is updated given d̃
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ICGN FE-DIC

How to update the running approximation?

• with (quasi-)GN it was:

u(k+1) = u(k) + d

• with ICGN, it becomes:

Compute u(k+1) such that:

φ(x, u(k+1)) = φ(x, u(k)) ◦ φ−1(x,−d̃)

(Inverse Compositional Gauss-Newton)

Optional simplifications:

◦ first order approximation of the inversion: φ−1(x,−d̃) ≈ φ(x, d̃) → forward method

◦ zero order approximation of the displacement: u(k))(x + δ) ≈ u(k)(x) → additive method

Inverse composition unconditionnally fulfills the descent direction criterion.
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Back to the rotation test case

Number of iterations:
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Large deformation test-case #1

Problem definition

εnormal =

[
1.8 0
0 −0.4

]
and εshear =

[
0.7 −1.1
−1.1 0.7

]
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Large deformation test-case #1

Convergence of the tension test-case:
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Large deformation test-case #1

Convergence of the shear test-case:
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Large deformation test-case #2

Punch image set (Courtesy of K. Genovese) (generated using BSpeckleRender [Sur et al. 18] )
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Large deformation test-case #2

Convergence:
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Large deformation test-case #2

Heterogeneous strain field
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SOLVER: Summary

Descent-based DIC solvers vs finite strain

• numerically efficient because we have a semi-analytic expression of the gradient.

• Steepest Descent, Newton, Gauss-Newton, quasi-Gauss Newton and Inverse
Compositional Gauss-Newton should work in general.

• if large rotations to be expected (> 20◦), the classic approx. ∇F ≈∇G(u(k)) may be
slow or may require line search (to adapt the step size α)

→ Prefer Inverse Compositional Gauss Newton (ICGN)
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2. INITIALIZATION
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Initialization
All the above algorithms require to initialize close to the (unknown) solution.
Different possibilities (that may be combined):
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Initialization
• Multilevel Initialization:

image coarsening or filtering
kinematic model coarsening.

Increasing mesh size + projection [Rethore et

al. 08]

Weak regularization [Passieux et al. 12]

Strong regularization [Rouwane et al. 23]

α = argmin
1

2
‖f − g ◦ φ(x,R α)‖2

FFD [Chapelier et al. 21]
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Initialization
• Multilevel Initializations

• Incremental approaches, if a sufficient number of time increment is available in the
image series.
For step i initialized with solution of previous step u(i−1):

d = argmin
1

2
‖f0 − fi ◦ φ(x, u(i−1) + d)‖2

Or Incremental approach (updated reference image):

d = argmin
1

2
‖fi−1 − fi ◦ φ(x, d)‖2
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Initialization
• Multilevel Initializations

• Incremental approaches

• Point matching algorithms SIFT [Lowe 04] SURF [Bay et al. 08]

DIC: [Zhou et al. 12] [David et al. 14] [Genovese et al. 18]

+ possible outliers cleaning / regularization procedures
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Initialization
• Multilevel Initializations

• Incremental approaches

• Point matching algorithms

• Reliability/Quality-guided subset approaches [Pan 09, Zhou et al. 12]
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INITIALIZATION: Summary

• No universal tool, maybe case dependent.

• Small steps: combination of incremental approach and strong regularization usually
solves the problem.

• Large steps: point matching algorithms are efficient because scale invariants.
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3. REGULARIZATION
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Graylevel conservation problem is ill-posed:
DIC requires regularisation
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Regularization

Adjusting the subset/element size is a strong regularisation technique

10−2 10−1 100 101
10−7

10−6

10−5

10−4

10−3

Element size (mm)

R
an

do
m

 e
rr

or
 (m

m
)

model error (farfield)
total error (farfield)

ultimate error (farfield)

... but it’s not the unique (not the best?) way.
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Regularization

• An alternative: Weak regularization (Tikhonov)
[Réthoré, Roux, Hild 08, Leclerc et al. 10, JCP & Périé 12, Rouwane et al. 22]

α is a filter cutoff length - can be set L-curve [Hansen 00] :

d = argmin
1

2
‖f − g ◦ φ(x, d)‖2︸ ︷︷ ︸

graylevelterm

+ α
1

2
‖d‖2

A︸ ︷︷ ︸
regularization term
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Regularization

• Example of Laplacian regularization [Perini et al. 14] :

JC Passieux 22/38



Regularization

• Example of Laplacian regularization [Perini et al. 14] :

0 10 20 30 40

2.3

2.4

2.5

2.6

2.7

element size (voxel)

D
im

en
si
on

le
ss

re
si
du

al
(%

) DVC

JC Passieux 22/38



Regularization

• Example of Laplacian regularization [Perini et al. 14] :

0 10 20 30 40

2.3

2.4

2.5

2.6

2.7

element size (voxel)

D
im
en
si
on

le
ss

re
si
du

al
(%

) DVC
Regularized DVC

JC Passieux 22/38



Regularization

Many choices for A

• Rigid body [Staring et al. 07] [JCP et al. 14]

• Laplacian [Rohlfing et al. 03] [JCP and Périé 12]

• Elastic [Bajcsy and Kovacic 89] [Kybic and Unser 03] [Likar and Pernus 01] [Réthoré et al. 09]

[Leclerc et al. 11] [Mendoza et al. 19] [Rouwane et al. 22, 23]

• Elasto-plastic [Réthoré et al. 13] [Mathieu et al. 15]

• Finite strain [Genet et al. 18]

[Bajcsy and Kovacic 89] Multiresolution elastic matching, Comput. Vis. Graphics Image Process., 46(1)1–2.
[Kybic and Unser 03] Fast parametric elastic image registration, IEEE Trans. Image Process., 12(11)1427–1442
[Likar and Pernus 01] A hierarchical approach to elastic registration based on mutual information, Im. Vis. Comput.
[Staring et al. 07] A rigidity penalty term for nonrigid registration, Med. Phys., 34(11)4098–4108
[Rohlfing et al. 03] Volume-preserving nonrigid registration of MR breast images using free-form deformation with an
incompressibility constraint, IEE Trans. Med. Imag.
[Réthoré et al. 09] An extended and integrated digital image correlation technique applied to the analysis of fractured
samples, Eur. J. Comp. Mech.
[Leclerc et al. 11] Voxel-scale digital volume correlation. Experimental Mechanics.
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Mechanically regularized DVC with large local bendings
In situ compression test on a open-cell foam [Pétureau 18] .

No pattern at the strut scale!
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Mechanically regularized DVC with large local bendings
A double challenge: No pattern at the strut scale AND Large local buckling/bending
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Mechanically regularized DVC with large local bendings
Classic (FE) DVC at an homogenized scale : element size > cell size

Even in this situation, it requires a bit of skills (the shape of the pattern dots evolves):

• multiscale initialisation + reduced kinematic basis

• image filtering

• adjusted weak regularisation based of the Laplacian of the displacement field
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Mechanically regularized DVC with large local bendings
Proposed architecture-driven DVC: [Rouwane et al. Exp. Mech. 2023]

An image-based geometric and mechanical model used to weakly regularize DVC.

• Voxel based: thresholding [Hollister et al. 94] , graylevel values [Liu et al. 19]

• Fitted mesh: Marching cubes [Lorensen et al. 87] [Frey et al. 94]

• Unfitted mesh: FCM, X-FEM, CUT-FEM, Ficticious domain method [Schilinger et al.

11,12,15] [Burman et al. 15] [Verhoosel et al. 15] [Lehrenfeld et al. 16] [Fries et al. 16]

[Legrain et al. 18] [Kerfriden et al. 20]JC Passieux 24/38



Mechanically regularized DVC with large local bendings
Macro: coarse mesh + FE-DVC + Tikhonov regularisation
Micro: Proposed architecture-driven DVC assisted by an image-based model
Visually comparable displacement fields on top of the fitted (micro) mesh
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Mechanically regularized DVC with large local bendings
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Mechanically regularized DVC with large local bendings
Reference Image Deformed Image Deformed Image

+ macro displacement + micro displacement

JC Passieux 24/38



Mechanically regularized DVC with large local bendings
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REGULARIZATION: Summary

• Digital Image Correlation must be regularized

• Adjusting the subset/element size is a strong regularisation technique and is not always
the best option

• Weak regularisation is a very interesting alternative especially in finite strain/rotations
where subset/elements deforms a lot

• Weak linear elastic regularisation works well to help DVC outside small perturbations
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4. OCCULTATION, LIGHT EFFECTS and PIXEL SIZE
→ Toward a new photometric formulation

JC Passieux 26/38



Toward Photometric DIC

How to perform DIC in such nonlinear problems?

• Tape spring hinges [Soykasap 07]

• Nonlinear slender elastic structures [Romero et al. 21] [Charrondière et al. 21]

Many problems:

• Occultation

• Surfaces not visible in both reference and deformed configurations

• Lighting effects

• Large displacements/rotations
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Toward Photometric DIC

Classic DIC is formulated on the comparison between two images:

f (x)− g(x + u(x))

Proposed Approach: comparison of a model and a measurement [Fouque et al. 21, 22]

g(x)− Î (x, u)

where Î is a synthetic image build from a model

We need:

• to know the pattern [Shi et al. 23] or to learn it from a scan [Fouque et al. 22]

• to learn and synthetise the generation of a pixel

• to learn and synthetise the way light interacts with the specimen

• to model and learn the lighting conditions

Inspiration from the CV community [Birkbeck et al. 16, Goldlücke et al. 14]
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Toward Photometric DIC

Step 1: Building the digital twin from a multiview scan of the object

• Only one camera used

• Multi-view pictures instead of several cameras ≈ scan

• Regularisation strategy: Amount of available data increase
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Toward Photometric DIC

Step 1: Building the digital twin

• Key idea = Retrieve the intrinsic texture [Dufour et al. 15] of the specimen from all the
observations

• Need = Rendering equation mapping an intrinsic texture to greylevel under given
lighting conditions :

Assuming a Lambertian model, we have:

Ri (x) = 〈n(x), li 〉 li T (x)

• Ri : graylevel rendered of picture i

• n: outgoing unit normal vector to the
specimen surface at point x

• li : Unit vector pointing from x in the
direction of the light

• li : light intensity

• T : the sought intrinsic texture: albedo
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Toward Photometric DIC

• Residual based on:
Ri (x)︸ ︷︷ ︸

predicted

− fi ◦ Pi (x)︸ ︷︷ ︸
observed

• Minimisation of the functional:

F (T ,S, pi
ext) =

∑
i

∫
Ω
V ′i (x)

[
〈n(x), li 〉 li T (x)− fi ◦ Pi (x + S(x))

]2

where V ′i is a weighting term:

V ′i (x) = Vi (x) 〈n(x)),Oi (x)〉

Vi is the visibility function (0 or 1)
the second terms account for the fact that a
more reliable sampling of the texture is achieved
by nearly fronto parallel observations.

[Birkbeck et al. 16]
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Toward Photometric DIC

Texture T , Shape S and Extrinsic parameters pext minimise functional:

T ,S, pi
ext = argmin

∑
i

∫
Ω
V ′i (x)

[
〈n(x), li 〉 li T (x)− fi ◦ Pi (x + S(x))

]2

Additional assumptions:

• light source behind the camera: ∀i , Oi = Zi

• light must be calibrated. 4 points on the white
paper T=1.

• minimisation are performed alternatively.
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Toward Photometric DIC

Results: (top) graylevel and (bottom) albedo
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Toward Photometric DIC

Reconstruction of a textured digital twin of the sample:
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Toward Photometric DIC

Step 2: Displacement measurement using the digital twin
Minimisation of the same functionnal:

U = argmin
∑
i

∫
Ω
V ′i (x)

[
〈n(x), li 〉 li T (x)− fi ◦ Pi (x + U(x))

]2

But this time T and pext are fixed and (here) one single camera:
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Toward Photometric DIC

Step 2: Displacement measurement using the digital twin

The algorithm, initialization close to the solution (95◦) is able to estimate a rigid body rotation
of 90◦ even if the visible surfaces are different in the reference and moved configuration seen
by the same camera.
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Toward Photometric DIC

To be done: Generation of a pixel
Example of a very large deformation synthetic dataset (BSpeckleRender [Sur et al. 18] )

[Courtesy of B. Blaysat and M. Coret]

A series of 500 images up to 700% of strain!
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Toward Photometric DIC
No problem to make it converge with an incremental approach:
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Toward Photometric DIC
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Conclusions

Many things already working

• Solvers work, if large rotations → ICGN

• Many initialization solutions

• Even elastic regularisation works in large displacements/strain

But a lot to be done

• Ph-DIC to be developed and tested in the presence of specimen deformation

• Ph-DIC capable to take into account the integration of light in the pixel
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