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High-dimensional data assimilation using Neural Networks
Context: Identification of the spatially-distributed friction coefficient

Method: Semi-Parameterized PINN (PINN [Raissi et al. 19]) 
where the physical parameters are treated as NN parameters

Parameter space of dim. 1000; identification in 2 min on a standard 6GB-GPU machine (compared to 5h with VDA methods).

Motivation & inspiration
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Shallow-Water equations (nonlinear, dynamic)

Boulenc, H., Bouclier, R., Garambois, P.-A., and Monnier, J.(2025). Spatially-distributed parameter identification by 
physics-informed neural networks illustrated on the 2D shallow-water equations. Inverse Problems, 41, 035006.



Outline

PINN-based material identification from classical FEMU

Appli. 1: synthetic beam with distributed E(x)

Appli. 2: real 2D case with cst E and

Appli. 3: synthetic 2D case with distributed E(x,y)

Direct appli. of PINN, experimental mech., comparison with FEMU

Real experimental context, accuracy vs FEMU

Fourier features, mechanical regularization, fixed point
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Mixed formulation, potential for efficient and accurate identif.
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Brief overview of FEMU (3/3)
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Concluding remarks on the FEMU approach

Mechanics strongly enforced (best mechanics that fits data)

May be computationally expensive when:

is large (spatially varying properties)
Solving a single mechanical problem is costly

Importance of the measured disp. boundary 

In contrast, the PINN-based approach will somehow 
bypass the direct solution of the mechanical problem
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Direct application of inverse PINN (3/3)
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Concluding remarks on the PINN approach (w.r.t. FEMU)

The parameters p are treated as trainable variables of the NN

Solution with available robust optim. algos. (e.g., PyTorch) 

Derivatives accurate and efficient with automatic diff.

High-dimensional p not a pb. (still                     & NN efficient)

Solution of (multiple) mechanical pbs replaced by learning a 
single function with a NN 

May be advantageous when      large, & complex mechanics 

Requires careful NN training for good accuracy (w.r.t. FEMU)

Reduce the impact of boundary disp. measurements

[Origin: Raissi et al. 19, Appli. Mech.: Wu et al. 23, Di Lorenzo et al. 23, Wei et al. 23, Motlagh et al. 25, etc] 
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Comparison with surrogate modeling
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Semi-Parameterized PINN VS Fully-Parameterized PINN PI-DeepONet [Wang et al. 21, Goswami et al. 22]
Neural operator [Kovachi et al. 23]

We seek for a single function         associated with a 
unique set of      , all within a single training phase

Offline: costly learning of the full mechanical operator
Online: use the surrogate model for rapid inference of
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Mixed formulation, potential for efficient and accurate identif.
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Results: beam with distributed E (1/4)
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A rather smooth distribution: a sinusoidal E(x)

NN disp. solution u(x) and calibrated E(x) Loss functions minimization during initialization and training 
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Results: beam with distributed E (1/4)
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NN disp. solution u(x) and calibrated E(x)

Training (LBFGS)

We are able to capture the solution after initializing even without Fourier features, because the latter is smooth.
We do not manage to directly capture E(x), especially near the boundaries.
With mechanical regularization, we are able to capture properly E(x), with only 1 fixed-point iteration.

A rather smooth distribution: a sinusoidal E(x)

Appli. 1: beam

Loss functions minimization during initialization and training 
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Results: beam with distributed E (2/4)
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A sharper distribution: two-Gaussian for E(x)

NN disp. solution u(x) and calibrated E(x)

Appli. 1: beam

Loss functions minimization during initialization and training 
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Results: beam with distributed E (2/4)
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A sharper distribution: two-Gaussian for E(x)

NN disp. solution u(x) and calibrated E(x)

Initialization: 
(ADAM)

with 
Fourier features

without 
Fourier features

In this case, Fourier features are required to capture the locally varying solution.

Appli. 1: beam

Loss functions minimization during initialization and training 
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Results: beam with distributed E (2/4)
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A sharper distribution: two-Gaussian for E(x)

NN disp. solution u(x) and calibrated E(x)

Initialization: 
(ADAM)

Training (fixed-point, LBFGS)

In this case, Fourier features are required to capture the locally varying solution.
The oscillations introduced by the Fourier features can be mitigated through mechanical regularization.
This allows to correctly capture E(x) during the fixed-point iterations.

Appli. 1: beam

Loss functions minimization during initialization and training 
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Results: beam with distributed E (3/4)
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A singular distribution: two-step for E(x)

NN disp. solution u(x) and calibrated E(x)

Appli. 1: beam

Loss functions minimization during initialization and training 

18/35



Results: beam with distributed E (3/4)
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A singular distribution: two-step for E(x)

NN disp. solution u(x) and calibrated E(x)

Training (fixed-point, LBFGS):

Same key components: Fourier features + mechanical regul. + fixed point.

Initialization

Appli. 1: beam

Loss functions minimization during initialization and training 
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Results: beam with distributed E (4/4)
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Study of the robustness: two-step for E(x)

Only one obs. and one element per step

We are able to identify the weakened region 
of E using a single obs. & just one element.

Appli. 1: beam 19/35
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Appli. 2: real 2D case with cst E and     (1/2)
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Example: traction test on a plate with several holes
Experimental setup

Sample 
geometry:

FE mesh

- Material: PMMA
- Image resolution: 28.8 Mpix (6576x4384)
- Image scale: 1 Pix = 8,59 micron
- DIC software: Ufreckles
- mesh: 50 Pix/el (refined: 16 Pix/el), 13,426 nodes)
- Data processing: Tikhonov regul. (cut-off of 50 Pix)

Loading

[Réthoré 18]

Zone to identify
cst E and nu 

Measurements

Appli. 2: real 2D 21/35



Results: real 2D case with cst E and   (1/5)
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Results at the end of initialization

Contour plots of the solution

The solution is accurately learned by the NN but exhibits oscillations in its derivatives (strain fields)

Loss functions minimization

Appli. 2: real 2D 23/35

NN:

ref:



Results: real 2D case with cst E and   (2/5)

R. Bouclier May 27, 2025

Results at the end of regularization
Loss functions minimization

With the addition of mechanical
loss terms, we are able to enforce
mechanical equilibrium              
without compromising the
accuracy w.r.t. the observations.

Appli. 2: real 2D 24/35



Results: real 2D case with cst E and   (3/5)
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Results at the end of regularization

Appli. 2: real 2D 25/35

Mechanics serves as regularization: it reduces oscillations in the strain fields

initialization regularization mechanics

Contour plots of the solution



Results: real 2D case with cst E and   (3/5)
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Results at the end of regularization

Mechanics serves as regularization: it reduces oscillations in the strain fields (but: hard to capture very local behavior)

Contour plots of the solution

Appli. 2: real 2D 25/35

initialization regularization mechanics



Results: real 2D case with cst E and   (4/5)
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Results at the end of training

One iteration is sufficient for E, and two for     + fixed-point is not required here
The discrepancy with FEMU is on the order of 1%

Loss functions minimization

~ 1% 

~ 1% 

Appli. 2: real 2D 26/35

Convergence of the material parameters



Results: real 2D case with cst E and   (5/5)
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Results at the end of training
Results for each image and comparison with FEMU

We manage to obtain very accurate results w.r.t. FEMU (slight difference may be due to the difficulty to capture very local stress)
Appears more stable through the loading than FEMU: may be due to the absence of disp. BC for mechanics

Appli. 2: real 2D 27/35
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Appli. 3: synthetic 2D with E(x,y) (1/2)
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Example: traction test on a plate with a Gaussian inclusion
Synthetic test case

FE mesh and loading

Appli. 3: 2D & E(x,y) 29/35
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Reference E(x)

Generated measurements

Collocation points
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Results at the end of initialization 
Contour plots of the solution

Again: solution accurately learned by the NN but exhibits oscillations in its derivatives (strain fields)

Loss functions minimization
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Results: synthetic 2D with E(x,y) (1/5)

Displacement Strain

Appli. 3: 2D & E(x,y)



R. Bouclier May 27, 2025

Contour plots of the solution

Loss functions minimization
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Results: synthetic 2D with E(x,y) (2/5)

Results at the end of regularization

NN:

ref:

plays the role of the mechanical
regulator here

Appli. 3: 2D & E(x,y)
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Results at the end of training

Loss functions minimization
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Results: synthetic 2D with E(x,y) (3/5)

Convergence of the E(x)

Relative error of 4.4% 
with a standard deviation of 3.3%

With the fixed-point, we are able to capture the distributed E(x,y) with good accuracy

Appli. 3: 2D & E(x,y)



R. Bouclier May 27, 2025 34/35

Results: synthetic 2D with E(x,y) (4/5)

Strain Stress

NN at the end: NN at the end:

NN at init.:

Reference:

NN at init.:

Reference:

Appli. 3: 2D & E(x,y)



Conclusion
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Key points

Attempt to apply the inverse (Semi-Parameterized) PINN method to the identification of material properties

Solution of (multiple) mechanical pbs replaced by learning a single function with a NN 

Conclusion 35/35

May be advantageous when      large, & complex mechanics 

May be simple: solution with available robust optim. algos. (e.g., PyTorch) 

Application to identify spatially-distributed Young modulus and on concrete experimental data 

Requires careful NN training for good accuracy

Able to identify constant E and       on experimental data: 1% of ≠ w.r.t. FEMU 
Able to identify distributed E(x,y) on synthetic data

Prospects
Unify the formulations, identify E(x,y) on real data
Perform multi-level PINNs 
Extend to nonlinear material behaviors

[Aldirany  et al. 24, Dolean et al. 24] 



Thank you for your attention.
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